NewEnergyNews: Monday Study – The Global Picture Right Now

NewEnergyNews

Gleanings from the web and the world, condensed for convenience, illustrated for enlightenment, arranged for impact...

The challenge now: To make every day Earth Day.

YESTERDAY

  • FRIDAY WORLD HEADLINE-Economic Stimulus and Global New Energy
  • FRIDAY WORLD HEADLINE-Money For New Energy
  • THE DAY BEFORE

    THINGS-TO-THINK-ABOUT WEDNESDAY, December 1:

  • TTTA Wednesday-ORIGINAL REPORTING: California Regulators See Increased Value In Customer-Owned Resources
  • TTTA Wednesday-The Big Benefits From Pricing Carbon
  • THE DAY BEFORE THE DAY BEFORE

  • Monday Study – Energy Efficiency Vs. Long Duration Storage
  • THE DAY BEFORE THAT

  • Weekend Video: Power System Targeted By Drone Attack
  • Weekend Video: Busy Beavers Hold Back The Climate Crisis
  • Weekend Video: Texas Power System Solutions Shot Down
  • THE LAST DAY UP HERE

  • FRIDAY WORLD HEADLINE-Stand Up To Protect The Planet
  • FRIDAY WORLD HEADLINE-More New Energy Needed Now
  • --------------------------

    --------------------------

    Founding Editor Herman K. Trabish

    --------------------------

    --------------------------

    Some details about NewEnergyNews and the man behind the curtain: Herman K. Trabish, Agua Dulce, CA., Doctor with my hands, Writer with my head, Student of New Energy and Human Experience with my heart

    email: herman@NewEnergyNews.net

    -------------------

    -------------------

      A tip of the NewEnergyNews cap to Phillip Garcia for crucial assistance in the design implementation of this site. Thanks, Phillip.

    -------------------

    Pay a visit to the HARRY BOYKOFF page at Basketball Reference, sponsored by NewEnergyNews and Oil In Their Blood.

  • ---------------
  • WEEKEND VIDEOS, December 4-5:
  • Illinois Is 16TH State With 100% New Energy Commitment!
  • General Motors Is Seizing The EV Opportunity
  • How To Lose The EV Opportunity

    Monday, November 08, 2021

    Monday Study – The Global Picture Right Now

    World Energy Outlook 2021

    October 2021 (International Energy Agency)

    Executive Summary

    A new global energy economy is emerging, but the transformation still has a long way to go

    In 2020, even while economies bent under the weight of Covid-19 lockdowns, renewable sources of energy such as wind and solar PV continued to grow rapidly, and electric vehicles set new sales records. The new energy economy will be more electrified, efficient, interconnected and clean. Its emergence is the product of a virtuous circle of policy action and technology innovation, and its momentum is now sustained by lower costs. In most markets, solar PV or wind now represents the cheapest available source of new electricity generation.

    Clean energy technology is becoming a major new area for investment and employment – and a dynamic arena for international collaboration and competition.

    At the moment, however, every data point showing the speed of change in energy can be countered by another showing the stubbornness of the status quo. The rapid but uneven economic recovery from last year’s Covid-induced recession is putting major strains on parts of today’s energy system, sparking sharp price rises in natural gas, coal and electricity markets. For all the advances being made by renewables and electric mobility, 2021 is seeing a large rebound in coal and oil use. Largely for this reason, it is also seeing the second-largest annual increase in CO2 emissions in history. Public spending on sustainable energy in economic recovery packages has only mobilised around one-third of the investment required to jolt the energy system onto a new set of rails, with the largest shortfall in developing economies that continue to face a pressing public health crisis. Progress towards universal energy access has stalled, especially in sub-Saharan Africa.

    The direction of travel is a long way from alignment with the IEA’s landmark Net Zero Emissions by 2050 Scenario (NZE1), published in May 2021, which charts a narrow but achievable roadmap to a 1.5 °C stabilisation in rising global temperatures and the achievement of other energy-related sustainable development goals.

    At a pivotal moment for energy and climate, the WEO-2021 provides an essential guidebook for COP26 and beyond

    Pressures on the energy system are not going to relent in the coming decades. The energy sector is responsible for almost three-quarters of the emissions that have already pushed global average temperatures 1.1 °C higher since the pre-industrial age, with visible impacts on weather and climate extremes. The energy sector has to be at the heart of the solution to climate change.

    At the same time, modern energy is inseparable from the livelihoods and aspirations of a global population that is set to grow by some 2 billion people to 2050, with rising incomes pushing up demand for energy services, and many developing economies navigating what has historically been an energy- and emissions-intensive period of urbanisation and industrialisation. Today’s energy system is not capable of meeting these challenges; a low emissions revolution is long overdue.

    This special edition of the World Energy Outlook has been designed to assist decision makers at the 26th Conference of the Parties (COP26) and beyond by describing the key decision points that can move the energy sector onto safer ground. It provides a detailed stocktake of how far countries have come in their clean energy transitions, how far they still have to go to reach the 1.5 °C goal, and the actions that governments and others can take to seize opportunities and avoid pitfalls along the way. With multiple scenarios and case studies, this WEO explains what is at stake, at a time when informed debate on energy and climate is more important than ever.

    Announced climate pledges move the needle, but achieving them in full and on time cannot be taken for granted

    In the run-up to COP26, many countries have put new commitments on the table, detailing their contributions to the global effort to reach climate goals; more than 50 countries, as well as the entire European Union, have pledged to meet net zero emissions targets. If these are implemented in time and in full, as modelled in detail in our new Announced Pledges Scenario (APS), they start to bend the global emissions curve down. Over the period to 2030, low emissions sources of power generation account for the vast majority of capacity additions in this scenario, with annual additions of solar PV and wind approaching 500 gigawatts (GW) by 2030. As a result, coal consumption in the power sector in 2030 is 20% below recent highs. Rapid growth in electric vehicle sales and continued improvements in fuel efficiency lead to a peak in oil demand around 2025. Efficiency gains mean that global energy demand plateaus post-2030.

    The successful pursuit of all announced pledges means that global energy-related CO2 emissions fall by 40% over the period to 2050. All sectors see a decline, with the electricity sector delivering by far the largest. The global average temperature rise in 2100 is held to around 2.1 °C above pre-industrial levels, although this scenario does not hit net zero emissions, so the temperature trend has still not stabilised.

    A lot more needs to be done by governments to fully deliver on their announced pledges. Looking sector-by-sector at what measures governments have actually put in place, as well as specific policy initiatives that are under development, reveals a different picture, which is depicted in our Stated Policies Scenario (STEPS). This scenario also sees an accelerating pace of change in the power sector, sufficient to realise a gradual decline in the sector’s emissions even as global electricity demand nearly doubles to 2050.

    However, this is offset by continued growth in emissions from industry, such as the production of cement and steel, and heavy-duty transport, such as freight trucks. This growth largely comes from emerging market and developing economies as they build up their nationwide infrastructure. In the STEPS, almost all of the net growth in energy demand to 2050 is met by low emissions sources, but that leaves annual emissions at around current levels. As a result, global average temperatures are still rising when they hit 2.6 °C above pre-industrial levels in 2100.

    Today’s pledges cover less than 20% of the gap in emissions reductions that needs to be closed by 2030 to keep a 1.5 °C path within reach

    The APS sees a doubling of clean energy investment and financing over the next decade, but this acceleration is not sufficient to overcome the inertia of today’s energy system. In particular, over the crucial period to 2030, the actions in this scenario fall well short of the emissions reductions that would be required to keep the door open to a Net Zero Emissions by 2050 trajectory. One of the key reasons for this shortfall is that today’s climate commitments, as reflected in the APS, reveal sharp divergences between countries in the pledged speeds of their energy transitions.

    Alongside its achievements, this scenario also contains the seeds of new divisions and tensions, in the areas of trade in energy-intensive goods, for example, or in international investment and finance. Successful, orderly and broad-based energy transitions depend on finding ways to lessen the tensions in the international system that are highlighted in the APS. All countries will need to do more to align and strengthen their 2030 goals and make this a collaborative global transition in which no one is left behind.

    Solutions to close the gap with a 1.5 °C path are available – and many are highly cost-effective

    The WEO-2021 highlights four key measures that can help to close the gap between today’s pledges and a 1.5 °C trajectory over the next ten years – and to underpin further emissions reductions post-2030. More than 40% of the actions required are cost-effective, meaning that they result in overall cost savings to consumers compared with the pathway in the APS. All countries need to do more: those with existing net zero pledges account for about half of the additional reductions, notably China. The four measures are:

    A massive additional push for clean electrification that requires a doubling of solar PV and wind deployment relative to the APS; a major expansion of other low-emissions generation, including the use of nuclear power where acceptable; a huge build-out of electricity infrastructure and all forms of system flexibility, including from hydropower; a rapid phase out of coal; and a drive to expand electricity use for transport and heating. Accelerating the decarbonisation of the electricity mix is the single most important lever available to policy makers: it closes more than one-third of the emissions gap between the APS and NZE. With improved power market designs and other enabling conditions, the low costs of wind and solar PV mean that more than half of the additional emissions reductions could be gained at no cost to electricity consumers.

    A relentless focus on energy efficiency, together with measures to temper energy service demand through materials efficiency and behavioural change. The energy intensity of the global economy decreases by more than 4% per year between 2020 and 2030 in the NZE – more than double the average rate of the previous decade. Without this improvement in energy intensity, total final energy consumption in the NZE would be about one-third higher in 2030, significantly increasing the cost and difficulty of decarbonising energy supply. We estimate that almost 80% of the additional energy efficiency gains in the NZE over the next decade result in cost savings to consumers.

    A broad drive to cut methane emissions from fossil fuel operations. Rapid reductions in methane emissions are a key tool to limit near-term global warming, and the most cost-effective abatement opportunities are in the energy sector, particularly in oil and gas operations. Methane abatement is not addressed quickly or effectively enough by simply reducing fossil fuel use; concerted efforts from governments and industry are vital to secure the emissions cuts that close nearly 15% of the gap to the NZE.

    A big boost to clean energy innovation. This is another crucial gap to be filled in the 2020s, even though most of the impacts on emissions are not felt until later. All the technologies needed to achieve deep emissions cuts to 2030 are available. But almost half of the emissions reductions achieved in the NZE in 2050 come from technologies that today are at the demonstration or prototype stage. These are particularly important to address emissions from iron and steel, cement and other energy-intensive industrial sectors – and also from long-distance transport. Today’s announced pledges fall short of key NZE milestones for the deployment of hydrogen-based and other low-carbon fuels, as well as carbon capture, utilisation and storage (CCUS).

    Finance is the missing link to accelerate clean energy deployment in developing economies

    Getting the world on track for 1.5 °C requires a surge in annual investment in clean energy projects and infrastructure to nearly USD 4 trillion by 2030. Some 70% of the additional spending required to close the gap between the APS and NZE is needed in emerging market and developing economies. There have been some notable examples of developing economies mobilising capital for clean energy projects, such as India’s success in financing a rapid expansion of solar PV in pursuit of its 450 GW target for renewables by 2030.

    However, there have also been persistent challenges, many of which have been exacerbated by the pandemic. Funds to support sustainable economic recovery are scarce and capital remains up to seven-times more expensive than in advanced economies. In some of the poorest countries in the world, Covid-19 also broke the trend of steady progress towards universal access to electricity and clean cooking. The number of people without access to electricity is set to rise by 2% in 2021, with almost all of the increase in sub-Saharan Africa.

    An international catalyst is essential to accelerate flows of capital in support of energy transitions and allow developing economies to chart a new lower emissions path for development. Most transition-related energy investment will need to be carried out by private developers, consumers and financiers responding to market signals and policies set by governments. Alongside the necessary policy and regulatory reforms, public financial institutions – led by international development banks and larger climate finance commitments from advanced economies – play crucial roles to bring forward investment in areas where private players do not yet see the right balance of risk and reward. Finance is the missing link to accelerate clean energy deployment in developing economies

    Strategies to phase out coal have to effectively deal with impacts on jobs and electricity security…Liquids and gases are caught between scenarios…There is a looming risk of more turbulence ahead for energy markets…Transitions can offer some shelter for consumers against oil and gas price shocks…Other potential energy security vulnerabilities require close vigilance…The costs of inaction on climate are immense, and the energy sector is at risk…

    The potential prize is huge for those who make the leap to the new energy economy

    In the NZE, there is an annual market opportunity that rises well above USD 1 trillion by 2050 for manufacturers of wind turbines, solar panels, lithium-ion batteries, electrolysers and fuel cells. This is comparable in size to the current global oil market. This creates enormous prospects for companies that are well positioned along an expanding set of global supply chains. Even in a much more electrified energy system, there are major openings for fuel suppliers: companies producing and delivering low-carbon gases in 2050 are handling the equivalent of almost half of today’s global natural gas market.

    Employment in clean energy areas is set to become a very dynamic part of labour markets, with growth more than offsetting a decline in traditional fossil fuel supply sectors. As well as creating jobs in renewables and energy network industries, clean energy transitions increase employment in areas such as retrofits and other energy efficiency improvements in buildings, and the manufacturing of efficient appliances and electric and fuel cell vehicles. In total, an additional 13 million workers are employed in clean energy and related sectors by 2030 in the APS – and this figure doubles in the NZE. The potential prize is huge for those who make the leap to the new energy economy

    Making the 2020s the decade of massive clean energy deployment will require unambiguous direction from COP26

    This WEO-2021 provides stark warnings about the pathway that we are on, but also clear-headed analysis of the actions that can bring the world onto a path towards a 1.5 °C future – with a strong affirmation of the benefits that this yields. Governments are in the driving seat: everyone from local communities to companies and investors needs to be on board, but no one has the same capacity as governments to direct the energy system towards a safer destination.

    The way ahead is difficult and narrow, especially if investment continues to fall short of what is required, but the core message from the WEO-2021 is nonetheless a hopeful one. The analysis clearly outlines what more needs to be done over the crucial next decade: a laser-like focus on driving clean electrification, improving efficiency, reducing methane emissions and turbocharging innovation – accompanied by strategies to unlock capital flows in support of clean energy transitions and ensure reliability and affordability. Many of the actions described are cost-effective, and the costs of the remainder are insignificant compared with the immense risks of inaction.

    Realising the agenda laid out in this WEO represents a huge opportunity to change the global energy system in a way that improves people’s lives and livelihoods. A wave of investment in a sustainable future must be driven by an unmistakeable signal from Glasgow…

    0 Comments:

    Post a Comment

    << Home