Gleanings from the web and the world, condensed for convenience, illustrated for enlightenment, arranged for impact...

The challenge now: To make every day Earth Day.


  • Weekend Video: New Energy Means New Jobs
  • Weekend Video: Better Communication About The Climate Crisis
  • Weekend Video: VW Affirms Driving Is Ready To Go Electric

  • FRIDAY WORLD HEADLINE-The Climate Crisis Is The World’s Biggest Worry – Survey
  • FRIDAY WORLD HEADLINE-Record New Energy Global Growth In 2020


  • TTTA Wednesday-ORIGINAL REPORTING: The Search For A Successor Solar Policy
  • TTTA Wednesday-Local Governments Still Driving New Energy

  • Monday Study: PG&E’s Plans To Mitigate Wildfires

  • Weekend Video: Denial Goes Oh So Wrong
  • Weekend Video: Solar On Schools Can Pay For Teachers
  • Weekend Video: DOE Secretary of the Solutions Department Jennifer Granholm
  • --------------------------


    Founding Editor Herman K. Trabish



    Some details about NewEnergyNews and the man behind the curtain: Herman K. Trabish, Agua Dulce, CA., Doctor with my hands, Writer with my head, Student of New Energy and Human Experience with my heart




      A tip of the NewEnergyNews cap to Phillip Garcia for crucial assistance in the design implementation of this site. Thanks, Phillip.


    Pay a visit to the HARRY BOYKOFF page at Basketball Reference, sponsored by NewEnergyNews and Oil In Their Blood.

  • ---------------
  • MONDAY’S STUDY AT NewEnergyNews, April 12:
  • SoCalEdison’s Newest Plan To Mitigate Wildfires

    Thursday, September 30, 2010


    DOE: Big Utilities Can Get Reliable Power from Small Solar PV Arrays
    Sara Stroud, September 28, 2010 (SolveClimate via Reuters)

    "Massive utility-scale solar projects under development in the deserts of California and the Southwest have been in the spotlight in recent months as they win slow approval from state and federal regulators. But a study released in September by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory found that smaller solar photovoltaic (PV) installations may collectively offer similar promise for increasing the amount of renewable power on the grid.

    "Traditionally, the reliability of small PV systems’ power output has been a concern for utilities, project developers and grid operators, since all it takes is a few clouds to disrupt the power flow of a small array. But [
    Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power by Andrew Mills and Ryan Wiser] suggests that when PV plant arrays are spread out over a geographic area, the variability in power output is largely eliminated…This means that for utilities, the distributed generation of small PV arrays could mean increased efficiency, reduced costs and a quicker path to a cleaner energy portfolio."

    click thru for the complete slide presentation

    "…The power output of a PV plant can fluctuate more than 70 percent in less than 10 minutes on a partly cloudy day, according to the report. That makes it difficult for grid operators to maintain a balance between power generation and demands…Following the model set by wind energy…the LBL study looked at synchronized solar data from 23 sites in Oklahoma and Kansas located between 20 kilometers and 440 km apart. It found that variability of solar output [for sites 20 km apart] was six times less than that of a single site…[and at] sites that were 50 km apart, the variability of solar was virtually identical to that of wind over time scales of five minutes to 15 minutes…"

    click thru for the complete slide presentation

    "The report’s findings could also have implications for the cost of managing the integration of more solar power into utility grids by lessening the need for energy storage…Geographic diversity reduces [variability and] costs of generation…For utilities, especially those that are required to meet state renewable portfolio standards, figuring out how to integrate renewable power into the grid…and understanding how siting projects will affect output is critical…

    "In California, where utilities are required to get 33 percent of their power from renewables by 2020, a lot of PV growth has come from utility programs…While many of those are large-scale centralized projects, two of the state’s biggest utilities have launched widespread distributed generation initiatives that are expected to produce more than 1,000 megawatts (MW) through rooftop and ground-mounted PV arrays…[I]n early 2010 the New York Power Authority launched an initiative to deploy 100 MW worth of rooftop and ground-mounted solar installations across the state…"

    Study: Reduced CO2 Emissions Should Start With Electric Cars
    Gabriel Perna, September 28, 2010 (International Business Times)

    "A comprehensive study has concluded the best way to reduce U.S. oil demand and carbon emissions would be an aggressive push towards electric vehicles.

    [Energy Market Consequences of Emerging Renewable Energy and Carbon Dioxide Abatement Policies…] from the Baker Institute Energy Forum was comprised of several academic papers on a variety of topics pertaining to reduction of carbon emissions. Among them were carbon pricing, the wind industry, global U.S. carbon and energy strategies, and renewable energy research and development…"

    click to enlarge

    "Among the studies there were none that addressed electric cars specifically; what the researchers did was look at the greatest carbon reductions and try different methods of getting there. Electric cars were found to be the most effective way to reduce carbon emissions in the shortest time. The study found if there were a mandate requiring 30 percent of all vehicles to be electric by 2050, it would reduce U.S. oil use by 2.5 million barrels a day.

    "This would be in addition to the three million barrels-per-day savings already expected from new corporate standards for average fuel efficiency. The switch to using that many electric cars would cut emissions seven percent, while the proposed renewable portfolio standard for other kinds of energy use would only cut it by four percent…"

    click to enlarge

    "…James Coan…[of the Baker Institute said researchers] are eager to see whether the Chevrolet Volt and Nissan Leaf, two newer electric cars on the market, sell well. There are two factors holding back widespread adoption of electric cars: cost of ownserhip and infrastructure.

    "…Coan said if manufacturers can figure out a way to design the electric car with lower costs then it should become more attractive to consumers. He said regulatory policies that favor electric vehicles from the Environmental Protection Agency and the National Highway Traffic Safety Administration will also help…"

    Marine renewable energy research gets $1.5M in funding
    Beth Perdue, September n24, 2010 (New England Business Bulletin)

    "…[Massachusett’s] Marine Renewable Energy Center [MREC] has received $1.5 million in federal funding to continue its research into wind, tidal and wave energy sources. The grants, from the Bureau of Ocean Energy Management, include $750,000 for annual operations and $750,000 for studying advanced techniques for assessing offshore wind and hydrokinetic energy.

    "The research project, a combined effort of four universities and the Woods Hole Oceanographic Institute [WHOI], has identified a new test site for wave and wind research in addition to an already targeted tidal test site…[T]he National Offshore Renewable Energy Innovation Zone, the new site is located about 30 miles south of Muskeget Channel…"

    click to enlarge

    "MREC partners, in addition to WHOI, are UMass Dartmouth, UMass Amherst, the University of Hawaii and the University of Washington. Dr. Eugene Terray, from WHOI, is the project's technical leader.

    "MREC is also working to create new training programs for repairing offshore wind turbines, learning from its European counterparts the importance of this position…Although some turbine manufacturing companies already train technicians, working on offshore wind farms [several hundred feet in the air over open ocean] has special requirements…"

    click to enlarge

    "…MREC is working with the state, community colleges, Massachusetts Maritme Academy, and the Greater New Bedford Workforce Investment Board to create training programs [for work that could be an employment alternative for out-of-work fishermen]…[but has not yet obtained] funding for developing coursework…

    "…MREC recently moved its headquarters from the Advanced Technology Manufacturing Center in Fall River to the Quest Center in New Bedford…New Bedford's geographic location and port capabilities…[make it a] logical place for deployment of offshore wind industry products and services such as those related to the Cape Wind project…[T]he economic impact on the city could be significant…Bremerhaven [on the German coast] is a city of similar size and background to New Bedford that, once it became the deployment site for German wind projects, saw its jobs grow by 700 in a three-year period…"

    The Challenge of Storing Energy on a Large Scale
    Erica Gies, September 29, 2010 (NY Times)

    "Renewable energy sources like solar power and wind have been in the spotlight lately, as have ways to improve control of the power distribution system through information technology…[Now] incentives from the Energy Department, increased interest from venture capitalists and policy shifts at the state level, where utilities are regulated, are laying the groundwork for bringing energy storage capability to the electricity grid… [G]rid-scale storage technologies…include pumped hydroelectric energy; air compression systems; flywheels; and even superlarge batteries…

    "Grid operators must keep power flowing reliably to users, a task known as frequency regulation…[That is complicated by] solar and wind power…[which] can change output rapidly if external conditions shift: a cloud crossing the sun or a drop in the wind…Aside from these minute-to-minute changes…the sun does not shine at night, and in many places, wind is calm during the day…"

    click to enlarge

    "Utilities have generally used the more controllable output from fossil fuel power plants to compensate for intermittency. But if renewable sources are to contribute a greater share of the energy mix — California has a target of 33 percent by 2020 — the declining proportion of fossil fuel power available to smooth out the peaks and troughs of output will make storage technology essential… Recent research suggests that storage technology could respond faster to supply and demand shifts than fossil fuel plants…

    "…Utilities must also build systems capable of meeting peak demand, which arises at different times of the day, week and year. For this purpose, utilities have traditionally relied on bringing additional fossil fuel generating plants into action…But fossil fuel plants run most efficiently at full power. And the marginal plants turned on to meet peak demand are often less efficient and more polluting than the power generators that run around the clock…Using stored energy to meet peak demand could eliminate the need to switch on dirtier, more expensive plants."

    click to enlarge

    "Depending on where storage is sited, it could also reduce the need for transmission lines…That would be a boon because utilities often struggle to get rights of way to build transmission lines. As a result, they usually overbuild after they get permission…Storage can also help utilities get the best price for the energy they generate, using a strategy called ‘time shifting.’ Energy managers can store lower-cost energy produced at night, then release it to the grid during peak demand when it is more valuable. With both traditional power plants and wind farms, much more energy is produced at night than can be used…

    "The Energy Department is supporting a variety of storage projects…The venture capital world has taken note…The most common technology already in use for grid storage is pumped storage hydroelectricity, in which managers use electricity to pump water up into higher elevation reservoirs at night, then release it at times of peak demand…Another large storage option is compressed air…Electricity is used to force air under pressure into a cavern. To extract it, operators heat the compressed air with natural gas, then push it through turbines to generate electricity…Flywheel systems use electricity to drive a motor, which accelerates a massive disc, storing electricity in the increased momentum. When the stored power is needed, the flywheel is used to drive the motor in reverse…Batteries have not yet reached grid scale for the most part…Many experts think batteries hold the most promise because they are scalable and can be used anywhere…"


    Post a Comment

    << Home