Gleanings from the web and the world, condensed for convenience, illustrated for enlightenment, arranged for impact...

The new challenge: To make every day Earth Day.



  • -------------------





  • Weekend Video: Hearing From Idiotic Idiots And Others
  • Weekend Video: The Aussies Say It Plainly
  • Weekend Video: Living In The Wasteland Of The Free



  • --------------------------


    Anne B. Butterfield of Daily Camera and Huffington Post, is a biweekly contributor to NewEnergyNews

  • Another Tipping Point: US Coal Supply Decline So Real Even West Virginia Concurs (REPORT)

    November 26, 2013 (Huffington Post via NewEnergyNews)

    Everywhere we turn, environmental news is filled with horrid developments and glimpses of irreversible tipping points.

    Just a handful of examples are breathtaking: Scientists have dared to pinpoint the years at which locations around the world may reach runaway heat, and in the northern hemisphere it's well in sight for our children: 2047. Survivors of Superstorm Sandy are packing up as costs of repair and insurance go out of reach, one threat that climate science has long predicted. Or we could simply talk about the plight of bees and the potential impact on food supplies. Surprising no one who explores the Pacific Ocean, sailor Ivan MacFadyen described long a journey dubbed The Ocean is Broken, in which he saw vast expanses of trash and almost no wildlife save for a whale struggling a with giant tumor on its head, evoking the tons of radioactive water coming daily from Fukushima's lamed nuclear power center. Rampaging fishing methods and ocean acidification are now reported as causing the overpopulation of jellyfish that have jammed the intakes of nuclear plants around the world. Yet the shutting down of nuclear plants is a trifling setback compared with the doom that can result in coming days at Fukushima in the delicate job to extract bent and spent fuel rods from a ruined storage tank, a project dubbed "radioactive pick up sticks."

    With all these horrors to ponder you wouldn't expect to hear that you should also worry about the United States running out of coal. But you would be wrong, says Leslie Glustrom, founder and research director for Clean Energy Action. Her contention is that we've passed the peak in our nation's legendary supply of coal that powers over one-third of our grid capacity. This grim news is faithfully spelled out in three reports, with the complete story told in Warning: Faulty Reporting of US Coal Reserves (pdf). (Disclosure: I serve on CEA's board and have known the author for years.)

    Glustrom's research presents a sea change in how we should understand our energy challenges, or experience grim consequences. It's not only about toxic and heat-trapping emissions anymore; it's also about having enough energy generation to run big cities and regions that now rely on coal. Glustrom worries openly about how commerce will go on in many regions in 2025 if they don't plan their energy futures right.

    2013-11-05-FigureES4_FULL.jpgclick to enlarge

    Scrutinizing data for prices on delivered coal nationwide, Glustrom's new report establishes that coal's price has risen nearly 8 percent annually for eight years, roughly doubling, due mostly to thinner, deeper coal seams plus costlier diesel transport expenses. Higher coal prices in a time of "cheap" natural gas and affordable renewables means coal companies are lamed by low or no profits, as they hold debt levels that dwarf their market value and carry very high interest rates.

    2013-11-05-Table_ES2_FULL.jpgclick to enlarge


    One leading coal company, Patriot, filed for bankruptcy last year; many others are also struggling under bankruptcy watch and not eager to upgrade equipment for the tougher mining ahead. Add to this the bizarre event this fall of a coal lease failing to sell in Wyoming's Powder River Basin, the "Fort Knox" of the nation's coal supply, with some pundits agreeing this portends a tightening of the nation's coal supply, not to mention the array of researchers cited in the report. Indeed, at the mid point of 2013, only 488 millions tons of coal were produced in the U.S.; unless a major catch up happens by year-end, 2013 may be as low in production as 1993.

    Coal may exist in large quantities geologically, but economically, it's getting out of reach, as confirmed by US Geological Survey in studies indicating that less than 20 percent of US coal formations are economically recoverable, as explored in the CEA report. To Glustrom, that number plus others translate to 10 to 20 years more of burning coal in the US. It takes capital, accessible coal with good heat content and favorable market conditions to assure that mining companies will stay in business. She has observed a classic disconnect between camps of professionals in which geologists tend to assume money is "infinite" and financial analysts tend to assume that available coal is "infinite." Both biases are faulty and together they court disaster, and "it is only by combining thoughtful estimates of available coal and available money that our country can come to a realistic estimate of the amount of US coal that can be mined at a profit." This brings us back to her main and rather simple point: "If the companies cannot make a profit by mining coal they won't be mining for long."

    No one is more emphatic than Glustrom herself that she cannot predict the future, but she presents trend lines that are robust and confirmed assertively by the editorial board at West Virginia Gazette:

    Although Clean Energy Action is a "green" nonprofit opposed to fossil fuels, this study contains many hard economic facts. As we've said before, West Virginia's leaders should lower their protests about pollution controls, and instead launch intelligent planning for the profound shift that is occurring in the Mountain State's economy.

    The report "Warning, Faulty Reporting of US Coal Reserves" and its companion reports belong in the hands of energy and climate policy makers, investors, bankers, and rate payer watchdog groups, so that states can plan for, rather than react to, a future with sea change risk factors.

    [Clean Energy Action is fundraising to support the dissemination of this report through December 11. Contribute here.]

    It bears mentioning that even China is enacting a "peak coal" mentality, with Shanghai declaring that it will completely ban coal burning in 2017 with intent to close down hundreds of coal burning boilers and industrial furnaces, or shifting them to clean energy by 2015. And Citi Research, in "The Unimaginable: Peak Coal in China," took a look at all forms of energy production in China and figured that demand for coal will flatten or peak by 2020 and those "coal exporting countries that have been counting on strong future coal demand could be most at risk." Include US coal producers in that group of exporters.

    Our world is undergoing many sorts of change and upheaval. We in the industrialized world have spent about a century dismissing ocean trash, overfishing, pesticides, nuclear hazard, and oil and coal burning with a shrug of, "Hey it's fine, nature can manage it." Now we're surrounded by impacts of industrial-grade consumption, including depletion of critical resources and tipping points of many kinds. It is not enough to think of only ourselves and plan for strictly our own survival or convenience. The threat to animals everywhere, indeed to whole systems of the living, is the grief-filled backdrop of our times. It's "all hands on deck" at this point of human voyaging, and in our nation's capital, we certainly don't have that. Towns, states and regions need to plan fiercely and follow through. And a fine example is Boulder Colorado's recent victory to keep on track for clean energy by separating from its electric utility that makes 59 percent of its power from coal.

    Clean Energy Action is disseminating "Warning: Faulty Reporting of US Coal Reserves" for free to all manner of relevant professionals who should be concerned about long range trends which now include the supply risks of coal, and is supporting that outreach through a fundraising campaign.

    [Clean Energy Action is fundraising to support the dissemination of this report through December 11. Contribute here.]

    Author's note: Want to support my work? Please "fan" me at Huffpost Denver, here ( Thanks.

    - -------------------

    Anne's previous NewEnergyNews columns:

  • Another Tipping Point: US Coal Supply Decline So Real Even West Virginia Concurs (REPORT), November 26, 2013
  • SOLAR FOR ME BUT NOT FOR THEE ~ Xcel's Push to Undermine Rooftop Solar, September 20, 2013
  • NEW BILLS AND NEW BIRDS in Colorado's recent session, May 20, 2013
  • Lies, damned lies and politicians (October 8, 2012)
  • Colorado's Elegant Solution to Fracking (April 23, 2012)
  • Shale Gas: From Geologic Bubble to Economic Bubble (March 15, 2012)
  • Taken for granted no more (February 5, 2012)
  • The Republican clown car circus (January 6, 2012)
  • Twenty-Somethings of Colorado With Skin in the Game (November 22, 2011)
  • Occupy, Xcel, and the Mother of All Cliffs (October 31, 2011)
  • Boulder Can Own Its Power With Distributed Generation (June 7, 2011)
  • The Plunging Cost of Renewables and Boulder's Energy Future (April 19, 2011)
  • Paddling Down the River Denial (January 12, 2011)
  • The Fox (News) That Jumped the Shark (December 16, 2010)
  • Click here for an archive of Butterfield columns


    Some details about NewEnergyNews and the man behind the curtain: Herman K. Trabish, Agua Dulce, CA., Doctor with my hands, Writer with my head, Student of New Energy and Human Experience with my heart



    Your intrepid reporter


      A tip of the NewEnergyNews cap to Phillip Garcia for crucial assistance in the design implementation of this site. Thanks, Phillip.


    Pay a visit to the HARRY BOYKOFF page at Basketball Reference, sponsored by NewEnergyNews and Oil In Their Blood.

  • ---------------
  • Thursday, November 20, 2014


    Top Republican bows to scientists on climate change

    Stephen Stromberg, November 17, 2014 (Washington Post)

    “…[T]he country’s debate on climate change has been stuck on whether the phenomenon is happening at all, or on whether humans are responsible for it…and key GOP leaders still seem unwilling to move the discussion forward now…[but] comments from Sen. John Thune (R-S.D.)…offer a glimmer of hope that at least some Republicans aren’t comfortable with their party’s role…Asked about the overwhelming agreement among experts on the cause and trajectory of global warming, Thune [said:] ‘There are a number of factors that contribute to that, including human activity. The question is, what are we going to do about it and at what cost?’…[T]he number-three Republican in the Senate admitted that human activity is affecting the climate and that this concern demands a policy response…

    “…[T]he answer to the last question should be relatively simple for honest conservatives: The efficient, market-friendly approach to cutting dependence on greenhouse gases is pricing carbon dioxide emissions and allowing market forces to adapt the economy…Thune didn’t go there…Republicans have to do more than simply acknowledge that there is a risk. His statement might be merely another GOP attempt to justify doing too little without seeming anti-science…[But it] points in a sure direction: It will be ultimately untenable for Republicans to admit that global warming is a legitimate concern yet reflexively attack efforts to deal with it…[The country can do better] than President Obama’s regulatory approach…only if more Republicans ask the right question — instead of continuing to dignify those who demand that their leaders dismiss and disdain scientists’ warnings.” click here for more


    Ford To Make Electric Cars 'Attainable To The Masses;' CEO Denies Rumors Ford Is Interested In Tesla

    Kukil Bora, November 18, 2014 (International Business Times)

    "…[Ford Motor Company] intends to mass-produce affordable electric vehicles [according to CEO Mark Fields]…[He] emphasized that Ford has [a full line of electric vehicles that have performed well in the market place and] the capability to make electric cars with a strategy different from that of Tesla Motors…[that will] produce reasonably priced electric cars…Fields also said that Ford is not interested in buying Tesla, despite ongoing speculation that both Ford and General Motors Company are keen to [do so]…While Ford is currently ranked second in terms of sales in the electric car industry, the company’s Ford Focus was recently ranked as the most fuel-efficient compact car in the U.S…[ Fields said] Tesla’s approach is to cater to a high-end consumer…[but Ford will] nmake electrified vehicles ‘attainable to the masses’…” click here for more


    Solar moves beyond early adopters in upper Midwest

    Andrea Johnson, November 14, 2014 (Farm & Ranch Guide)

    “…Better technology and lower prices are making solar power in 2014 achievable and more affordable [for farmers and ranchers than in the past…Two types of solar power are available – thermal collectors heat air and water; photovoltaic (photo – light and voltaic – electrical potential) systems convert light to electricity…Consumers can now purchase solar energy systems for as low as $1 per watt, with added installation costs…The federal government provides a 30 percent tax credit…[Supports are also available through USDA’s Rural Development Program Rural Energy for America Program (REAP)] and some utilities and states provide other incentives for approved solar…REAP also funds work to help producers determine how efficiently they are using energy now on their farms and ranches…

    “Those who live in the Upper Midwest and Great Plains may wonder if there is enough sunlight available to make photovoltaic (PV) cells cost effective…The answer is, yes…but we have to strategically place our solar panels…Germany has more solar power than any other country in the world, even though most of Germany sits farther north than the Dakotas, Montana or northern Minnesota…” click here for more


    S.F. clean energy program could generate 8,100 jobs, report says

    Marisa Lagos, Novembwer 16, 2014 (SF Chronicle)

    “A renewable energy program in San Francisco could create more that 8,100 construction jobs by building $2.4 billion worth of proposed solar, wind and geothermal projects, a new report says. That refutes many criticisms made by Mayor Ed Lee when the city killed a previous version of CleanPowerSF, supporters of the plan say…The proposal, which has wide support among the city’s supervisors, would allow San Francisco to generate or purchase its own clean energy and deliver it to consumers through Pacific Gas and Electric Co.’s existing transmission network…

    “Because CleanPowerSF could shake the company’s decades-long monopoly over delivering energy to San Francisco, it has met stiff opposition …To ensure that rates are competitive with PG&E’s, the report says the city will have to determine generation prices ahead of time and build a program backward from there…EnerNex also recommends focusing on local employment…The report lays out at least five large-scale solar projects that could be built in San Francisco and would create about 1,000 local construction jobs…[Such] private renewable energy projects on homes and businesses within the city also stand to help CleanPowerSF improve its green portfolio, lower costs for consumers and create even more local jobs, the report states — up to seven construction jobs for every $1 million spent on build out…” click here for more

    Wednesday, November 19, 2014


    Minnesota Renewable Energy Integration and Transmission Study Final Report

    October 31, 2014, (GE Energy Consulting, with The Minnesota Utilities and Transmission Companies, Excel Engineering, Inc., and MISO)

    Executive Summary

    Background…Study Objectives and Overall Approach…Development of Study Scenarios…Development of Transmission Conceptual Plans…Evaluation of Operational Performance…Dynamic Performance Analysis…

    Key Findings

    This study examined two levels of increased wind and solar generation for Minnesota; 40% (represented by Scenarios 1 and 1a) and 50% (represented by Scenarios 2 and 2a). In the 40% Minnesota Scenario, MISO North/Central is at 15% (current state RESs). The 50% Minnesota Scenario also included an increase of 10% (to 25%) in the MISO North/Central region. Production simulation was used to examine annual hourly operation of the MISO North/Central system for all four of these scenarios. Transient and dynamic stability analysis was conducted for Scenarios 1 and 1a but not on Scenarios 2 and 2a.

    General Conclusions for 40% RE Penetration in Minnesota

    With wind and solar resources increased to achieve 40% renewable energy for Minnesota and 15% renewable energy for MISO North/Central, production simulation and transient/dynamic stability analysis results indicate that the system can be successfully operated for all hours of the year with no unserved load, no reserve violations, and minimal curtailment of renewable energy. This assumes sufficient transmission mitigations, as described in Section 1.4, to accommodate the additional wind and solar resources.

    This is operationally achievable with most coal plants operated as baseload must-run units, similar to existing operating practice. It is also achievable if all coal plants are economically committed per MISO market signals, but additional analysis would be required to better understand implications, tradeoffs, and mitigations related to increased cycling duty.

    Dynamic simulation results indicate that there are no fundamental system-wide dynamic stability or voltage regulation issues introduced by the renewable generation assumed in Scenario 1 and 1a. This assumes:

    • New wind turbine generators are a mixture of Type 3 and Type 4 turbines with standard controls

    • The new wind and utility-scale solar generation is compliant with present minimum performance requirements (i.e. they provide voltage regulation/reactive support and have zero- voltage ride through capability)

    • Local-area issues are addressed through normal generator interconnection requirements

    General Conclusions for 50% RE Penetration in Minnesota

    With wind and solar resources increased to achieve 50% renewable energy in Minnesota and 25% renewable energy in MISO, production simulation results indicate that the system can be successfully operated for all hours of the year with no unserved load, no reserve violations, and minimal curtailment of renewable energy. This assumes sufficient transmission upgrades, expansions and mitigations to accommodate the additional wind and solar resources.

    This is operationally achievable with most coal plants operated as baseload must-run units, similar to existing operating practice. It is also achievable if all coal plants are economically committed per MISO market signals, but additional analysis would be required to better understand implications, tradeoffs, and mitigations related to increased cycling duty.

    No dynamic analysis was performed for the study scenarios with 50% renewable energy for Minnesota (Scenarios 2 and 2a) due to study schedule limitations and this analysis is necessary to ensure system reliability.

    Annual Energy in the Minnesota-Centric Region

    Figure 1-1 shows the annual load and generation energy by type for the Minnesota-Centric region. Comparing Scenarios 1 and 1a (40% MN renewables) with the Baseline,

    • Wind and solar energy increases by 8.5 TWh, all of which contributes to bringing the State of Minnesota from 28.5% RE penetration to 40% RE penetration

    • There is very little change in energy from conventional generation resources

    • Most of the increase in wind and solar energy is balanced by a decrease in imports. The Minnesota-Centric region goes from a net importer to a net exporter.

    Comparing Scenarios 2 and 2a (50% MN renewables) with Scenarios 1 and 1a (40% MN renewables),

    • Wind and solar energy increases by 20 TWh. Of this total, 4.8 TWh brings the State of Minnesota from 40% to 50% RE penetration and the remainder contributes to bringing MISO from 15% to 25% RE penetration

    • Most of the increase in wind and solar energy in the Minnesota-Centric region is balanced by a decrease in coal generation and an increase in net exports to neighboring regions • Gas-fired, combined-cycle generation declines from 5.0 TWh in Scenario 1 to 3.0 TWh in Scenario 2.

    Cycling of Thermal Plants

    Most coal plants were originally designed for baseload operation; that is, they were intended to operate continuously with only a few start/stop cycles in a year (mostly due to scheduled or forced outages). Increased cycling duty could increase wear and tear on these units, with corresponding increases in maintenance requirements. Many coal plants in MISO presently are designated by the plant’s owner to operate as “must-run” in order to avoid start/stop cycles that would occur if they were economically committed by the market.

    Scenarios S1a and S2a assumed that all coal plants in MISO are subject to economic commitment/dispatch (i.e., not must-run) based on day-ahead forecasts of load, wind and solar energy within MISO. Production simulation results show significant coal plant cycling due to economic market signals:

    • Small coal units (below 300 MW rating) could have an additional 100 to 200 starts per year, beyond those due to forced or planned outages.

    • Large coal units (above 300 MW) could have an additional 20 to 100 starts per year

    Scenarios S1 and S2 assumed almost all coal plants would continue to operate as they do today. Coal units were on-line all year (except for scheduled maintenance periods) and were not decommitted during periods of low market prices. The results of these scenarios confirmed that the coal units could remain must-run with minor impacts on overall operation of the Minnesota-Centric region. Coal plant owners could choose to continue the must-run practice to avoid the detrimental impacts of increased cycling as wind and solar penetration increases. Doing so would likely incur some additional operational costs when energy prices fall below a plant’s breakeven point. Wind curtailment would also be about 0.5% higher than if the coal plants were economically committed.

    An attractive solution to the coal plant cycling issue may exist between the two bookend cases analyzed in this study. Scenarios 1a and 2a assumed that unit commitment was determined on a day-ahead basis, using day-ahead forecasts of wind and solar energy. The result was a high number of start/stop cycles of coal plants, sometimes with down-times of less than 2 days. If the unit commitment process was modified to use a longer term forward market (say 3 to 5 days ahead), then coal plant owners could adjust their operational strategy to consider decommitting units when prolonged periods of high wind/solar generation and low system loads are forecasted. A forward market would depend on longer term forecasts of wind, solar and load energy, consistent with the look-ahead period of the market. Although such forecasts would be somewhat less accurate than day-ahead forecasts, the quality of the forecasts would likely be adequate to support such unit commitment decisions.

    This study did not examine the economic or wear-and-tear impacts of increased cycling on coal units. Further information on this topic can be found in the NREL Western Wind and Solar Integration Study Phase 2 report7 and the PJM Renewable Integration Study report8. Combined-cycle (CC) units are better able to accommodate cycling duties than coal plants. Simulation results show that combined cycle units in the Minnesota-Centric region experience from 50 to 200 start/stop cycles per year. Cycling of CC units declines slightly as wind and solar penetration increases. This decline is primarily due to a decrease in CC plant utilization as wind and solar energy increases.

    Curtailment of Wind and Solar Energy

    In general, a small amount of curtailment is to be expected in any system with a significant level of wind and solar generation. There are some operating conditions where it is economically efficient to accept a small amount of curtailment (i.e., mitigation of that curtailment would be disproportionately expensive and not justifiable).

    Overall curtailment in the Minnesota-Centric region is relatively small in all study scenarios, as shown in Table 1-2. Wind curtailment in Baseline and Scenario 1 is primarily due to local transmission congestion at a few wind plants. This congestion could be mitigated by transmission modifications, if economically justifiable.

    Wind curtailment in Scenario 2 is due to system-wide operational limits during nighttime hours, when many baseload generators are dispatched to their minimum output levels. This type of curtailment could be reduced by decommitting some baseload generation via economic market signals. The effectiveness of this mitigation option is illustrated by comparing Scenario 2 (coal units must-run) with Scenario 2a (economic coal commitment). Wind curtailment decreases from 2.14% to 1.60% (reduction of 332 GWh of wind curtailment). Solar curtailment decreases from 0.42% to 0.24% (reduction of 12 GWh of solar curtailment).

    Other Operational Issues

    No significant transmission system congestion was observed in any of the study scenarios with the assumed transmission upgrades and expansions. Transmission contingency conditions were considered in both the powerflow analysis used to develop the conceptual transmission system and the security-constrained economic dispatch in the production simulation analysis.

    Ramp-range-up and ramp-rate-up capability of the MISO conventional generation fleet increases with increased penetration of wind and solar generation. Conventional generation is generally dispatched down rather than decommitted when wind and solar energy is available, which gives those generators more headroom for ramping up if needed.

    Ramp-range-down and ramp-rate-down capability of the MISO conventional generation fleet decreases with increased penetration of wind and solar generation. In Scenario 2, there are 500 hours when ramp-rate-down capability of the conventional generation fleet falls below 100 MW/min. Periods of low ramp-down capability coincide with periods of high wind and solar generation. Wind and solar generators are capable of providing ramp-down capability during these periods. MISO’s existing Dispatchable Intermittent Resource (DIR) process already enables this for wind generators. It is anticipated that MISO would expand the DIR program to include solar plants in the future.

    System Stability, Voltage Support, Dynamic Reactive Reserves

    No angular stability, oscillatory stability or wide-spread voltage recovery issues were observed over the range of tested study conditions. The 16 dynamic disturbances used in stability simulations included key traditional faults/outages as well as faults/outages in areas with high concentrations of renewables and high inter-area transmission flows. System operating conditions included light load, shoulder load and peak load cases, each with the highest percent renewable generation periods in the Minnesota-Centric region.

    Overall dynamic reactive reserves are sufficient and all disturbances examined for Scenarios 1 and 1a show acceptable voltage recovery. The South & Central and Northern Minnesota regions get the majority of their dynamic reactive support from synchronous generation. Maintaining sufficient dynamic reserves in these regions is critical, both for local and system-wide stability.

    Southwest Minnesota, South Dakota and at times Iowa get a significant portion of dynamic reactive support from wind and solar resources. Wind and Solar resources contribute significantly to voltage support/dynamic reactive reserves. The fast response of wind/solar inverters helps voltage recovery following transmission system faults. However, these are current-source devices with little or no overload capability. Their reactive output decreases when they reach a limit (low voltage and high current).

    Synchronous machines (either generators or synchronous condensers), on the other hand, are voltage-source devices with high overload capability. This characteristic will strengthen the system voltage, allowing better utilization of the dynamic capability of renewable generation. The mitigation methods discussed below, namely stiffening the ac system through new transmission or synchronous machines, will also address this concern.

    Local load areas, such as the Silver Bay and Taconite Harbor area, require reactive support from synchronous machines due to the high level of heavy industrial loads. If all existing synchronous generation in this region is off line (i.e. due to retirement or decommitment), reinforcements such as new transmission or synchronous condensers would be required to support the load.

    Dynamic simulation results indicate that it is critical to maintain sufficient system strength and dynamic reserves to support high flows on the Northern Minnesota 500 kV lines and Manitoba high-voltage direct-current (HVDC) lines. Insufficient system strength and reactive support will limit Manitoba exports to the U.S. Existing transmission expansion plans, as modeled in this analysis, address these issues and are sufficient for the anticipated levels of Manitoba exports.

    The Manitoba HVDC ties and the 500 kV transmission system in Northern Minnesota require reactive support from synchronous generators, the Dorsey and Riel synchronous condensers, and the Forbes static var compensator (SVC) to maintain the expected level of Manitoba exports. Without sufficient reactive reserves, the system could be unstable for nearby transmission disturbances. The current transmission plans, as modeled in this analysis, address this issue.

    Weak System Issues

    Composite Short-Circuit Ratio (CSCR) is an indicator of the ability of an ac transmission system to support stable operation of inverter-based generation. A system with a higher CSCR is considered strong and a system with a lower CSCR is considered to be weak. CSCR is calculated as the ratio of the composite short-circuit MVA at the points of interconnection (POI) of all wind/solar plants in a given area to the combined MW rating of all those wind and solar generation resources.

    Low CSCR operating conditions can lead to control instabilities in inverter-based equipment (Wind, Solar PV, HVDC and SVC). Instabilities of this nature will generally manifest as growing voltage/current oscillations at the most affected wind or solar plants. In the worst conditions (i.e., very low CSCR), oscillations could become more wide-spread and eventually lead to loss of generation and/or damage to renewable generation equipment if not adequately protected against such events.

    This is a relatively new area off concern within the industry. The issue has emerged as the penetration of wind generation has grown. Understanding of the fundamental stability issues is rapidly growing as more wind plants are being installed in regions with weak ac systems.

    Equipment vendors, transmission planners and consultants are all working to gain a better understanding of the issues. Modeling and simulation tools have already been developed to enable detailed analysis of the phenomena. Wind and solar inverter control systems are being modified to improve weak system performance.

    Synchronous machines (either generators or synchronous condensers) contribute short-circuit strength to the transmission system and therefore increase CSCR. Therefore, system operating conditions with more synchronous generators online will have higher CSCR. Also, stronger transmission ties (additional transmission lines or transformers, or lower impedance transformers) between synchronous generation and regions of wind and solar generation will increase CSCR. SVCs and STATCOMs do not contribute short-circuit current, and because they are electronic converter based devices with internal control systems similar to wind/solar inverters, their presence in a weak system region could further reduce the effective CSCR and exacerbate the control system stability issues that occur in weak system conditions.

    There are two general situations where weak system issues generally need to be assessed:

    • Local pockets of a few wind and solar plants in regions with limited transmission and no nearby synchronous generation (e.g. plants in North Dakota fed from Pillsbury 230 kV near Fargo).

    • Larger areas such as Southwest Minnesota (Buffalo Ridge area) with a very high concentration of wind and solar plants and no nearby synchronous generation

    This study examined the sensitivity of weak system issues in Southwest Minnesota. Observations are as follows:

    The trouble spots identified in this analysis are not very sensitive to existing synchronous generation commitment. While there is very little synchronous generation within the area, the region is supported by a strong networked 345 kV transmission grid. Primary short circuit strength is from a wide range of base-load units in neighboring areas, and interconnected via the 345 kV transmission network. Commitment, decommittment or outages of individual synchronous generators do not have significant impact on CSCR in these identified areas.

    Transmission outages will lower system strength and make the issue worse. When performing CSCR and weak system assessments as wind and solar penetration increases, it will be prudent to consider normal and design-criteria outages at a minimum (i.e, outage conditions consistent with MISO reliability assessment practices).


    There are two approaches to improving wind/solar inverter control stability in weak system conditions:

    • To improve the inverter controls, either by carefully tuning the equipment control functions or modifying the control functions to be more compatible with weak system conditions. With this approach, wind/solar plants can tolerate lower CSCR conditions.

    • To strengthen the ac system, resulting in increased short-circuit MVA at the locations of the wind/solar plants. This approach increases CSCR.

    The approaches are complementary, so the ultimate solution for a particular region would likely be a combination of both.

    Mitigation through Wind/PV Inverter Controls

    Standard inverter controls and setting procedures may not be sufficient for weak system applications. Loop gains of internal control functions inherently increase when system impedance increases, thereby reducing the stability margin of the controllers. Developers and equipment vendors must be made aware when new plants are being proposed for weak system regions so they can design/tune controls to address the issue. Wind plant vendors have made significant progress in designing wind and solar plant control systems that are compatible with weak system applications.

    This approach becomes somewhat more difficult when there are wind/solar plants from multiple vendors in one region. The level of analysis requires detailed modeling of all affected wind plants at a level of detail that requires the use of proprietary control design information from the vendors. Vendors are very reluctant to share such data, except with independent consultants who can guarantee strict data security. However, this approach is gaining traction and a few projects have made effective implementations. The key to success is that project developers and equipment vendors must be informed beforehand that a given wind or solar plant will be installed at a weak system location. This enables the appropriate control design studies to be initiated before the project is installed.

    In the event that such control-based approaches are not sufficient, it would be possible to further improve weak system performance by employing one or more of the system-level mitigations discussed below.

    Mitigation by Strengthening the AC System

    CSCR analysis of the Southwest Minnesota region shows that synchronous condensers located near the wind and solar plants would be a very effective mitigation for weak system issues. Synchronous condensers are synchronous machines that have the same voltage control and dynamic reactive power capabilities as synchronous generators. Synchronous condensers are not connected to prime movers (e.g. steam turbines or combustion turbines), so they do not generate power.

    Other approaches that reduce ac system impedance could also offer some benefit:

    • Additional transmission lines between the wind/solar plants and synchronous generation plants

    • Lower impedance transformers, including wind/solar plant interconnection transformers

    Series capacitors on transmission lines could be used to increase CSCR and to improve the transmission system’s capability to transfer energy out of regions with high concentrations of wind and solar resources. However, series capacitors create subsynchronous frequency resonances in the transmission system which affect the performance of control systems within wind and solar plants. These resonances introduce an additional challenge to wind/solar plant control designs, which must maintain stable operation in the presence of the resonant conditions.Mitigation through “must-run” operating rules for existing generation was found to be not very effective. The plants with synchronous generators are not located close enough to effected wind/solar plants.


    OHIO NEW ENERGY JOBS REPORT SUPPRESSED Why don't some state officials want you to read this report on 'green’ energy jobs? Report on ‘green’ energy jobs was put on ice during debate

    Dan Gearino, November 16, 2014 (The Columbus Dispatch)

    “A state agency paid almost $435,000 for a survey to tally clean-energy jobs in Ohio but never released the results…The Ohio Development Services Agency says the study went unused because it was based on dubious methods and came to flawed conclusions…Others, including experts in survey methods, disagree…[Ohio Alternative Energy Job Survey Analysis]was conducted by ICF International [and Wright State University]…Among its findings…[1] Ohio had 31,322 jobs in the state’s ‘alternative energy economy’ as of 2012, a number that is larger than other commonly cited studies…[2] More than one-third of the jobs were for goods and services related to energy efficiency…[3] Solar power was tied to more jobs (5,619) than any other renewable-energy source…

    “…[Each] could have been relevant in the recent debate over Senate Bill 310…[which] puts a two-year freeze on state standards for renewable energy and energy efficiency, and it makes…other changes that critics say will damage the state’s green economy…[O]pponents repeatedly said that 25,000 jobs were at stake, a statistic from a 2012 study commissioned by a trade group for green-energy companies. The opponents did not know that the state had paid for a survey that says the industry is 25 percent larger…The report would have hurt the case of legislative Republicans who wanted to pass the bill…” click here for more

    SOLAR GIANT BUYS WIND DEVELOPER SunEdison and TerraForm Power Sign Definitive Agreement To Acquire First Wind For $2.4 Billion

    November 17, 2014 (MarketWatch)

    Leading global solar developer SunEdison, Inc. will become the world's biggest renewable energy development company. In partnership with global owner/operator of renewable energy power plants TerraForm Power, it acquired First Wind, one of the leading developers, owners and operators of wind projects in the U.S., for a total of up to $2.4 billion. They doubled their total addressable market and increased their total pipeline, backlog and leads to 8.0 GW, with immediate value creation for SunEdison and DPS accretion for TerraForm Power. SunEdison raised its 2015 installation guidance from 1.6-1.8 GW to 2.1-2.3 GW and accelerated timing of IDRs by approximately one year. TerraForm acquired 521 MW of operating wind and solar power plants with $72.5 million in CAFD and raised its 2015 dividend guidance to $1.30 per share, an increase of 44%. Transaction financing is fully committed and drop down growth funding is secured and there is $2.4 billion of committed bridge financing to fund the transaction, which is expected to close during Q1 2015. There is also $1.5 billion of non-recourse capital secured from six global banking institutions and First Reserve Infrastructure to fund future growth. Morgan Stanley, Barclays, BofA Merrill Lynch, Citi, Lazard, Goldman Sachs, and Marathon Capital participated. click here for more

    BUSINESS TO MAKE IT BIG IN SMART CITIES Navigant Research Leaderboard Report: Smart City Suppliers; Assessment of Strategy and Execution for 16 Smart City Suppliers

    Q4 2014 (Navigant Research)

    “…Interest in smart cities continues to grow, driven by a range of social, economic, and technological developments that are having an impact on cities around the world…[and] the supplier ecosystem for smart cities continues to expand. Established suppliers are moving into the market from the energy, transport, buildings, and government sectors, while startups are addressing a range of emerging opportunities. This has created a complex and dynamic market that requires suppliers to be innovative in their product offerings and in the way they engage with cities and their partner networks. According to Navigant Research, the global smart city technology market is expected to be worth more than $27.5 billion annually by 2023, compared to $8.8 billion in 2014…” click here for more

    Tuesday, November 18, 2014


    Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies

    Edgar G. Hertwicha, et. al., September 3, 2014 ()

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater eco-toxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world’s electricity needs in 2050.

    land use | climate-change mitigation | air pollution | multiregional input–output | CO2 capture and storage

    A shift toward low-carbon electricity sources has been shown to be an essential element of climate-change mitigation strategies (1, 2). Much research has focused on the efficacy of technologies to reduce climate impacts and on the financial costs of these technologies (2–4). Some life-cycle assessments (LCAs) of individual technologies suggest that, per unit generation, low-carbon power plants tend to require more materials than fossil-fueled plants and might thereby lead to the increase of some other environmental impacts (5, 6). However, little is known about the environmental implications of a widespread, global shift to a low-carbon electricity supply infrastructure. Would the material and construction requirements of such an infrastructure be large relative to current production capacities? Would the shift to low-carbon electricity systems increase or decrease other types of pollution? Energy-scenario models normally do not represent the manufacturing or material life cycle of energy technologies and are therefore not capable of answering such questions. LCAs typically address a single technology at a time. Comparative studies often focus on a single issue, such as selected pollutants (7), or the use of land (8) or metals (9, 10). They do not trace the interaction between different technologies. Existing comparative analyses are based on disparate, sometimes outdated literature data (7, 11, 12), which raises issues regarding differences in assumptions, system boundaries, and input data, and therefore the comparability and reliability of the results. Metaanalyses of LCAs address some of these challenges (13, 14), but, to be truly consistent, a comparison of technologies should be conducted within a single analytical structure, using the same background data for common processes shared among technologies, such as component materials and transportation. The benefits of integrating LCA with other modeling approaches, such as input–output analysis, energy-scenario modeling, and material-flow analysis have been suggested in recent reviews (7, 15).

    We analyze the environmental impacts and resource requirements of the wide-scale global deployment of different low-carbon electricity generation technologies as foreseen in one prominent climate-change mitigation scenario [the International Energy Agency’s (IEA) BLUE Map scenario], and we compare it with the IEA’s Baseline scenario (16). To do so, we developed an integrated hybrid LCA model that considers utilization of the selected energy technologies in the global production system and includes several efficiency improvements in the production system assumed in the BLUE Map scenario. This model can address the feedback of the changing electricity mix on the production of the energy technologies.

    We collected original life-cycle inventories for concentrating solar power (CSP), photovoltaic power (PV), wind power, hydropower, and gas- and coal-fired power plants with carbon dioxide (CO2) capture and storage (CCS) according to a common format, and we provide these inventories in SI Appendix. Bioenergy was excluded because an assessment would require a comprehensive assessment of the food system, which was beyond the scope of this work. Nuclear energy was excluded because we could not reconcile conflicting results of competing assessment approaches (17). To reflect the prospective nature of our inquiry, the modeling of technologies implemented in 2030 and 2050 also contains several assumptions regarding the improved production of aluminum, copper, nickel, iron and steel, metallurgical grade silicon, flat glass, zinc, and clinker (18). These improvements represent an optimistic-realistic development t in accordance with predictions and goals of the affected industries, as specified in ref. 18 and summarized in SI Appendix, Table S1. Technological progress in the electricity conversion technologies was represented through improved conversion efficiencies, load factors, and next-generation technology adoption to achieve the technology performance of the scenarios (see SI Appendix for details).

    Results has two parts. First, low-carbon technologies are compared with fossil electricity generation without CCS to quantify environmental cobenefits and tradeoffs relevant for long-term investment decisions in the power sector. This comparison reflects the current state-of-the-art technology performance for both low-carbon and fossil systems. We examine impacts in terms of greenhouse gas (GHG) emissions, eutrophication, particulate-matter formation, and aquatic ecotoxicity resulting from pollutants emitted to air and water throughout the life cycle of each technology. We also compare the life-cycle use of key materials (namely aluminum, iron, copper, and cement), nonrenewable energy, and land for all investigated technologies per unit of electricity produced. SI Appendix contains a discussion of technology-specific results. To our knowledge, this analysis is the first to be based on a life-cycle inventory model that includes the feedback of the changing electricity mix and the effects of improvements in background technologies on the production of the energy technologies.

    In the second part of Results, we show the potential resource requirements and environmental impacts of the evaluated technologies within the BLUE Map scenario and compare these results with those of the Baseline scenario. Our modeling is based on the installation of new capacity and the utilization of this capacity such that it is consistent with the BLUE Map scenario. within the BLUE Map scenario and compare these results with those of the Baseline scenario. Our modeling is based on the installation of new capacity and the utilization of this capacity such that it is consistent with the BLUE Map associated with the BLUE Map scenario over time and compare them with the Baseline scenario. We then compare results to annual production levels of these materials. In Discussion, we examine issues related to the presented work, in particular the implication of life-cycle effects on the modeling of mitigation scenarios and limitations with respect to the grid integration of variable renewable supply.


    Technology Comparison per Unit Generation. Our comparative LCA indicates that renewable energy technologies have significantly lower pollution-related environmental impacts per unit of generation than state-of-the-art coal-fired power plants in all of the impact categories we consider (Fig. 1 and SI Appendix, Table S5). Modern natural gas combined cycle (NGCC) plants could also cause very little eutrophication, but they tend to lie between renewable technologies and coal power for climate change (Fig. 1A) and ecotoxicity (Fig. 1C). NGCC plants also have higher contributions of particulate matter exposure (Fig. 1B). The LCA finds that wind and solar power plants tend to require more bulk materials (namely, iron, copper, aluminum, and cement) than coal- and gas-based electricity per unit of generation (Fig. 1 G–J). For fossil fuel-based power systems, materials contribute a small fraction to total environmental impacts, corresponding to <1% of GHG emissions for systems without CCS and 2% for systems with CCS. For renewables, however, materials contribute e 20–50% of the total impacts, with CSP tower and offshore wind technologies showing the highest shares (SI Appendix, Fig. S1). However, the environmental impact of the bulk material requirements of renewable technologies (SI Appendix, Table S1) is still small in absolute terms compared with the impact of fuel production and combustion of fossil-based power plants (Fig. 1). CCS reduces CO2 emissions of fossil fuel-based power plants but increases life-cycle indicators for particulate matter, ecotoxicity, and eutrophication by 5–60% (Fig. 1 B–D). Both postcombustion and precombustion CCS require roughly double the materials of a fossil plant without CCS (Fig. 1 G–J). The carbon capture process itself requires energy and therefore reduces efficiency, explaining much of the increase in air pollution and material requirements per unit of generation.

    Habitat change is an important cause of biodiversity loss (19). Habitat change depends both on the project location and on the specific area requirement of the technology. For example, PV power may be produced in pristine natural areas (high impact on habitat) or on rooftops (low impact on habitat). A detailed assessment t of specific sites used for future power plants is beyond the scope of this global assessment. As an indicator of potential habitat change, we use the area of land occupied during the life cycle of each technology (Fig. 1E).

    High land-use requirements are associated with hydropower reservoirs, coal mines, and CSP and ground-mounted PV power plants. The lowest land use requirements are for NGCC plants, wind, and roof-mounted PV. We consider roof-mounted PV to have zero direct land use because the land is already in use as a building. For ground-mounted solar power, we consider the entire power plant because the modules or mirrors are so tightly spaced that agriculture and other uses are not feasible in the unoccupied areas. Considering only the space physically occupied by the installation, the area requirements decrease by a factor of 2–3 compared with the values in Fig. 1E (8). For direct land use associated with wind power, we consider only the area occupied by the wind turbine itself, access roads, and related installations. We do not include the land between installations because it can be used for other purposes such as agriculture or wilderness, with some restrictions (20). If an entire land-based wind park is considered, land use would be on the order of 50–200 square meter-year/MWh (m2 a/MWh) (8, 20), which is higher than other technologies. We do not account for the use of sea area by offshore wind turbines.

    Cumulative nonrenewable (fossil or nuclear) energy consumption n is of interest because it traces the input of a class of limited resources. The current technologies used in the production of renewable systems consume 0.1–0.25 kWh of non-renewable e energy for each kWh of electricity produced (Fig. 1F). The situation is different for fossil fuel-based systems, for which the cumulative energy consumption reflects the efficiency of power production and the energy costs of the fuel chain and, if applicable, the CCS system…Scenario Results…


    Previous assessments of life-cycle impacts of electricity-generation technologies have used static LCAs (7, 11–15). Technologies are thus analyzed side-by-side, assuming current production technologies. We present an assessment based on an integrated, scenario-based hybrid LCA model with global coverage through the integration of the life-cycle process description in a nine-region multiregional input–output model. Integration of the life-cycle model, in which new technologies become part of the electricity mix and thus the life cycle of the same and other new technologies, addresses the interaction among technologies. Adopting a vintage capital model, the life-cycle stages of individual power plants are explicitly in time, also a novelty compared with current LCA practice. This previously unidentified type of modeling approach thus provides the ability to model the role of various technologies in a collectively exhaustive and mutually exclusive way. Only through this integration can the life-cycle emissions and resource use of energy scenarios be analyzed correctly. Further, we can assess the contributions of changes in the technology mix and improvements in the technology y itself to future reductions of environmental impacts, as demonstrated in ref. 24.

    The widespread utilization of variable sources such as solar and wind energy raises the question: what are the additional environmental costs of matching supply and demand? Grid-integration measures for variable supply, such as the stand-by operation of fossil fuel power plants, grid expansion, demand-response and energy storage (25–27), result in extra resource requirements and environmental impacts (28). The challenges of balancing supply and demand are not yet severe in the BLUE Map scenario, in which variable wind and solar technologies cover 24% of the total electricity production in 2050, but balancing response and energy storage (25–27), result in extra resource requirements and environmental impacts (28). The challenges of balancing supply and demand are not yet severe in the BLUE Map scenario, in which variable wind and solar technologies cover 24% of the total electricity production in 2050, but scenario, the capacity factor of fossil fuel-fired power plants without CCS is reduced from 40% in 2007 to 19% in 2050 for natural gas, and from 65% to 30% for coal for the same period, but IEA provides no information on emissions associated with spinning reserves, or ramp-up and ramp-down. The National Renewable Energy Laboratory’s (NREL) Western Wind and Solar Integration Study indicates that increased fossil power plant cycling from the integration of a similar share of variable renewables may result in only negligible increases in greenhouse gas emissions s compared with a scenario without renewables. It may also result in further reductions in nitrogen oxide emissions and increases in SO2 emissions equal to about 2–5% of the total emissions reduced by using renewables. In a study investigating an 80% emission reduction in California, electricity storage requirements become significant only at higher rates of renewable energy penetration (26). See SI Appendix for further information on grid integration of renewables. Additional research on different options for the system integration of renewables and its environmental impact is required to determine the share of renewables most desirable from an environmental perspective.

    Our analysis raises important questions. (i) What would similar analyses of other mitigation scenarios look like? Thousands of scenarios have been collected in the Intergovernmental Panel on Climate Change (IPCC) mitigation scenario analysis database (4). These scenarios use a combination of energy conservation, renewable and nuclear energy, and CCS. Our analysis suggests that an electricity supply system with a high share of wind energy, solar energy, and hydropower would lead to lower environmental impacts than a system with a high share of CCS. (ii) How can scenarios for a wider range of environmental impacts be routinely assessed? Endogenous treatment of equipment life cycles as considered here in energy-scenario models has not yet been achieved. Options are either to (a) include some simplified assessments in energy scenario models, using the unit-based results from our analysis in the scenario models, or to (b) conduct a postprocessing of scenario results in the manner done for this study. The advantage of option a is that life-cycle emissions could be considered in the scenario development, thus affecting the technology choice; the advantage of option b is the ability to include feedbacks and economy-wide effects in the calculation of life-cycle emissions. (iii) Will fundamental differences in energy systems such as those between mitigation and baseline scenarios lead to significant changes to the supply and demand for many products (e.g., fuels and raw materials)? It is clear that there will be effects on the supply and demand of goods both due to different energy policies (e.g., carbon prices) and because of differences in the demand and supply of resources (e.g., iron or coal) to the global economy. Such indirect effects were outside of the scope of this study, but they could be considered in a consequential analysis (29).


    Our analysis indicates that the large-scale implementation of wind, PV, and CSP has the potential to reduce pollution-related environmental impacts of electricity production, such as GHG emissions, freshwater ecotoxicity, eutrophication, and particulate-matter exposure. The pollution caused by higher material requirements of these technologies is small compared with the direct emissions of fossil fuel-fired power plants. Bulk material requirements appear manageable but not negligible compared with the current production rates for these materials. Copper is the only material covered in our analysis for which supply may be a concern…


    U.S. TAKES WORLD LEAD IN WIND US Leads the World on Wind Energy Production

    November 14, 2014 (Sustainable Business)

    “…[T]he latest data shows [the U.S.] leads the world on wind energy production…Even though China has a third more wind turbines installed…US wind farms are pumping out 20% more electricity…accounting for over 5% of US electricity this year for the first time…Electricity from wind now powers 15.5 million US homes [while wind installations in China sit idle waiting for transmission infrastructure]. As of September, 46,600 wind turbines generate 62.3 gigawatts (GW) of energy, and there's another 13.6 GW under construction across 105 projects in 21 states…Among them is the world's biggest - the 3 GW Chokecherry wind farm in Wyoming, which will power a million homes…Besides having outstanding wind resources - the Midwest has been called the Saudi Arabia of wind - supportive policies on the state and federal levels have led to impressive growth…With this growth has come economies of scale, bringing costs and electricity prices down. Turbines have become much more efficient…Siting decisions have evolved to mitigate wildlife impacts, while increasing output…” click here for more

    SOLAR TO SHOW MISSOURI JOBS Solar energy company expands to Missouri

    November 14, 2014 (AP via KSDK/Gannett)

    “Global solar energy company Sungevity is opening a new office in Kansas City that could bring almost 600 new jobs to Missouri…[The California-based company plans to make the state the home of a new sales and service center that could lead to 595 jobs in the next several years…[Sungevity] provides solar energy for homeowners. The state is working to make millions of dollars in incentives available…[and a] Department of Economic Development spokeswoman [said] the company could get more than $11.8 million from the state…Money from the Missouri Works program would be available if Sungevity meets job creation and investment criteria.” click here for more

    WAVE ENERGY ROLLING SLOWLY IN Wave Energy Developers Line Up for Hawaii Test Site

    Pete Danko, November 5, 2014 (Breaking Energy)

    “…[A]t least three full-scale wave energy converters, all intended to produce significant grid power when deployed in arrays, are now in line to be tested in Hawaii…[Columbia Power Technologies] signed a $3 million contract with the U.S. Navy that will support deployment of the company’s StingRAY device offshore from Marine Corps Base Hawaii Kaneohe Bay…[and the U.S. Department of Energy just] selected Northwest Energy Innovations and Ocean Energy to receive a total of $10 million to deploy devices at the same test site, on the windward side of Oahu…The Wave Energy Test Site in Hawaii will feature two grid-connected berths…[but it isn’t yet] clear when exactly the three devices…[will] go in the water…[and] there could actually be a fourth device bound for Hawaii, through another Navy contract…[T]he StingRAY and [Northwest’s] Azura are broadly similar – both are point absorbers, the most common format for deep-water wave energy generation…Ocean Energy uses an entirely different technology, known as oscillating water column…All of these devices – along with others being tested at the European Marine Energy Centre in Scotland and elsewhere – are striving against some tough odds to advance the proposition of wave energy for utility-scale generation…” click here for more

    Monday, November 17, 2014


    The True Value of Solar

    Steven Fine, Ankit Saraf, Kiran Kumaraswamy, Alex Anich, October 21, 2014 (ICF International)

    [Editor’s note: See also:]

    Executive Summary

    As solar becomes an increasingly significant factor in the generation mix, ICF believes that utilities, investors, and markets are missing out on optimal strategies to price assets, lower costs, and mitigate risks, because they lack a consistent and accurate approach for determining the true value of solar.

    Current methodologies are all over the map, yielding different outputs based on different inputs, and different assumptions to those inputs. That is why we suggest here an updated, comprehensive methodology that could help all stakeholders expose the benefits and costs and make more informed— and ultimately more beneficial—investments.

    This kind of approach will likely become even more important in the years to come. The amount of distributed photovoltaic (DPV) installed behind the meter specifically for residential customers grew 60 percent from 2012 to 2013. ICF forecasts DPV installations to continue to increase to over 27 GW on commercial and residential premises by 2018, representing over 1.8 million locations where DPV will be interconnected to the distribution grid. Utilities, regulators, and the broader solar industry will need to understand how to value this growing factor in the market.

    In this paper, we look at the current state of value of solar (VOS) analysis and propose a more holistic methodology that can be consistently applied across various utility service areas. We recommend factors for inclusion and exclusion in the calculation and consider the most appropriate way to construct each variable, keeping in mind our base view that distributed resources need to be evaluated in the same light as other generating resources on the grid, not just a decrement to load.

    We recommend the following methodological approaches on potential VOS components:

     Energy: avoided generated energy represents the most straight-forward calculation, and while the best way to quantify energy value would be at the margin, a more simplified interim approach may be considered.

     Avoided/Deferred Generation Capacity: there needs to be a realistic analysis of the correlation between customer and system peak as well as an analysis of the DPV’s generation profile to accurately assign a DPV system capacity credit. The same process should be applied to DPV projects as with central station renewables, with the added complication that penetration rates on distribution system feeders also need to be included.

     Avoided Transmission and Distribution (T&D) Losses and Capacity: For the T&D portion of the grid, DPV potentially represents both a benefit and a cost, and both of these impacts need to be included and separately assessed as part of a VOS analysis. This includes careful consideration of where DPV will be deployed versus the loads being served, as well as understanding the different feeder characteristics.

     Grid Support Services: based on the high amount of uncertainty on this variable, we believe that Grid Support Services should not be included in a VOS calculation for potential payment but should be reviewed for the potential to determine the mechanisms that may need to be in place to monetize any potential value when the appropriate technology exists.

     Environmental: as a generation resource on the grid, DPV should be evaluated in the same way as any other new resource, including central station renewables, in terms of environmental costs and benefits that it confers upon the system. The emissions (in this case CO2) values assigned on a $/ton basis should be similar to those used to evaluate other power generation resources.

     Financial: “financial” benefits such as a fuel price hedge, reservation of natural gas pipeline capacity, and/or a market price response are not typically accounted for in utility integrated resource planning (IRP) evaluations of new resources, including central station renewables, or in cost-benefit evaluations of EE measures, and should not be included in VOS analyses.

     Social: “social” values are not included in the construction of utility scale conventional or renewable projects and should not be part of VOS analyses.

     Security: when DPV is able to isolate from the grid or “island,” it can provide reliability to the owner of the facility. This value, however, does not accrue to society or even the local grid. Security benefits should therefore be explored to value resiliency at specific critical locations, however, they should not yet be included in the VOS calculation until a set and agreed-upon methodology for resiliency is developed.

     Frequency to Update VOS: the utility should update the VOST on a locational basis for new installations yearly to address the changing amount of solar or energy use in different areas.

    The result of our approach is a general roadmap for achieving a better consensus VOS, though calculations for individual entities would require an analysis tailored to the individual circumstances of their geography, energy market, and physical grid infrastructure.

    This new VOS calculation could be an input in calculating the retail credit net energy metering (NEM) subsidy under a Value of Solar Tariff (VOST), and can also help to guide larger investment and market decisions for utilities, regulators, and the broader solar industry, better aligning costs and benefits and mitigating the risks that the rise of solar will bring to the market…


    In order to get the Value of Solar “right,” a consistent and comprehensive methodology is needed for calculating avoided generated energy, avoided generation capacity, T&D losses and capacity deferrals, grid support services, and environmental values. VOSTs should be updated periodically to reflect existing and new systems. Furthermore, DPV must be treated not simply as a decrement to the system, but as a system resource. Customers who have installed DPV should be viewed as contributing generation to the grid at time of export and also as retail customers when they are not exporting during the majority of the year.

    Traditional evaluation parameters such as those applied to central station resources, including renewables, should be applied. Avoided generation, capacity, and T&D should be correctly accounted for within the system at the location of the asset, and not just from aggregated and isolated distribution perspectives. This is increasingly important as distributed generation of all types continues to deliver costs and value to the grid based on the locational nature of the distribution feeder and its segments. Environmental benefits also need to be included in VOS calculation using the marginal resource avoided, which may be a gas fired simple cycle or combined cycle combustion turbine, but could also be any type of generating unit . Therefore, an analysis of the utility’s energy supply should be prepared and reviewed.

    Values that should not be part of a VOS calculation are those that would not be considered part of the valuation of a generation asset or those that are not yet available in the market – specifically financial hedging and societal benefits. Security benefits should be explored to value resiliency at specific critical societal locations. However, they should not yet be included in the VOS calculation until a set and agreed-upon methodology for resiliency is developed. Grid support services should be included once technologies and a means to actively coordinate with distributed generators like DPV has been established consistently.

    A VOS approach moves beyond NEM and makes much more sense, but studies to date have often been less rigorous and thorough, ignoring the infrastructure that needs to be in place to manage the DPV and capture the value. A strong VOS approach, in which the real costs and benefits to the system are accurately portrayed and valued, is not only a useful tool for integrating increasing amounts of DPV onto the grid, but will be critical for utilities, regulators, and other stakeholders to make rational planning and risk management decisions.


    BIG TEST FOR SOLAR ROADS KICKS OFF Solar-Energy Roadway Test Begins in the Netherlands

    November 11, 2014 (AP via NY Times)

    “SolaRoad, a project that tests roadways as a way to collect solar energy, [just started] in the Netherlands with about 230 feet of a bike path in the town of Krommenie, near Amsterdam. The path is built of Lego-like solar panels set in concrete and protected by heavy glass…[E]ach square meter of road generated 50 to 70 kilowatt-hours of energy per year, or enough for the initial strip to supply power to one or two Dutch households. The test is scheduled to run three years and will cost 3 million euros ($3.7 million)…[D]espite the high costs of developing the first SolaRoad, successor projects may be more profitable as solar cells grow cheaper and more efficient[according to Sten de Wit of the engineering firm TNO]…” click here for more

    FORD TURNS TO NEW ENERGY Exclusive Pilot Program With Wind Energy Corporation Brings Clean Energy To Select Ford Dealers

    November 10, 2014 (Ford Motor Co.)

    “…[Wind Energy Corporation] will invest nearly $750,000 to install wind sail and solar panel systems at four Ford dealerships; each Windy System™ will help power dealership facilities, electric vehicle charging stations and lot lighting…[Each] Windy System is expected to deliver 20,000 kilowatt-hours of electricity annually, enough to power two average-sized homes for a year or charge [a] Ford Focus Electric 870 times, [or a] Fusion Energi and C-MAX Energi 2,600 times each…Under a pilot program exclusive to [Ford Motor Company], Wind Energy will install wind sail and solar panel systems at [Dana Ford Lincoln, Staten Island, New York, Tom Holzer Ford, Farmington Hills, Michigan, The Ford Store, Morgan Hill, California, and Fiesta Ford, Indio, California]…Each Windy System™ includes…an integrated 7-kilowatt solar array…. Participating dealers are electric vehicle-certified and were selected by Ford and Wind Energy Corporation for both their exceptional commitment…” click here for more

    ADVANCED BATTERY SUPPLY CHAIN TO TRIPLE Materials for Advanced Batteries; Cathodes, Anodes, Electrolytes, Separators, and Other Materials for Advanced Batteries: Supply Chain Logistics and Market Sizing and Forecasts

    4Q 2014 (Navigant Research)

    “…[A] new wave of advanced battery chemistries is starting to significantly penetrate the stationary, portable, and transportation markets. These advanced battery chemistries include lithium ion (Li-ion), redox flow, sodium metal halide, and advanced carbon lead-acid (ACLA)…The expected growth of the supply chain is even more stunning…Total materials shipments are anticipated to increase from 304,516 MT in 2014 to 846,891 MT in 2023. The vast majority of those materials will likely be going into Li-ion batteries, which are expected to have a leading market share in all three of the major application areas: stationary, portable devices, and transportation…[O]ther chemistries will be making vast leaps in growth over the next 10 years, principally vanadium oxide and iron chromium flow batteries. According to Navigant Research, the primary component materials for advanced batteries are expected to increase from a $7.3 billion market in 2014 into a $19.3 billion market in 2023…” click here for more

    Saturday, November 15, 2014

    Hearing From Idiotic Idiots And Others

    After a spot-on indictment of Republicans’ misguided remarks on climate change, a Republican apologist offers more rigamarole and Bernie Sanders states the political facts.From Real Time via YouTube

    The Aussies Say It Plainly

    Some Australians sample the lies coal tells. From theaycc via YouYube

    Living In The Wasteland Of The Free

    More plain talk. This is from Iris DeMent. She never sounded better. From 1kevinwilliams via YouTube

    Friday, November 14, 2014


    Climate change is making coffee a risky bet for Central America

    Zach Dyer, November 14, 2014 (The Tico Times)

    “Growing coffee — a reliable staple in Central America — has become increasingly risky in recent years as climate change has caused evermore extreme weather. But farmers who take on this heightened risk are not reaping greater rewards due to a constellation of factors from volatile coffee markets to droughts to inefficient management…Peter Baker, a senior scientist with CABI, an organization that focuses on commodities and climate change, said the Earth’s changing climate already is affecting coffee production in the region, but it is difficult to anticipate how. Baker said climate models suggest Central America will experience warmer, drier conditions, and more droughts like this year’s should be expected. As weather patterns become increasingly erratic, Baker said farmers should prepare for more extreme conditions and even diversify away from coffee…Climate change is widely blamed for the outbreak of a leaf rust fungus known as roya…[that] has caused $1 billion in damages to the regional economy and has been exacerbated by the isthmus’s aging coffee plants. Baker said that as base temperatures in Central America creep up, problems like roya would continue…” click here for more


    Green jobs debate should look beyond short-term benefits, says UKERC report

    5 November 2014 (UK Energy Research Center)

    “…[R]enewable energy and energy efficiency create up to ten times more jobs per unit of electricity generated or saved than fossil fuels…[But] labour intensity may not be a desirable quality and support for green jobs should not solely focus on short-term gains but also look towards long-term economic growth…UKERC’s Technology and Policy Assessment team[found]...Electricity from coal and gas creates 0.1-0.2 gross jobs per gigawatt-hour generated…Electricity from wind creates 0.05-0.5 gross job per gigawatt-hour generated…Energy efficiency creates 0.3-1.0 gross jobs per gigawatt-hour saved…Electricity from solar creates 0.4-1.1 gross jobs per gigawatt-hour generated…Results show that renewable energy and energy efficiency create up to 1 job per gigawatt-hour more than fossil fuels and when the economy is underperforming, such as during a recession, it is sensible to focus government expenditure on these labour-intensive sectors…[But employment] in the energy industries also needs to be considered in the light of wider macroeconomic questions. If the economy is near full employment then high labour intensity may not provide a strong rationale for government support…” click here for more


    Largest Solar Power Plant in Africa Flips the Switch

    Leon Kaye, November 13, 2014 (TriplePundit)

    “…[P]lenty of opportunities exist for clean energy companies as investors worldwide realize Africa, with all of its risks [and seven of the world’s fastest growing economies], is a booming market…[Solar Reserve and partners have] completed and launched the Jasper PV Project in South Africa…the largest of its kind on the African continent…Located near the diamond mining center of Kimberley, the 96 megawatt plant and its 325,000 photovoltaic modules…[is an important step] toward South Africa’s renewable energy goals…[Its renewable resources] have not come close to being fully exploited…[while South Africans] endure blackouts on a regular basis, and energy shortages have long been the bane of conducting business in Africa’s second largest economy…[The project provided 1 million man-hours of construction work and 800 on-site construction jobs] in South Africa, where unemployment has long hovered around 25 percent…” click here for more