NewEnergyNews: TODAY’S STUDY: THE MIDWEST GRID IS READY FOR 40% NEW ENERGY/

NewEnergyNews

Gleanings from the web and the world, condensed for convenience, illustrated for enlightenment, arranged for impact...

The challenge now: To make every day Earth Day.

YESTERDAY

THINGS-TO-THINK-ABOUT WEDNESDAY, August 23:

  • TTTA Wednesday-ORIGINAL REPORTING: The IRA And The New Energy Boom
  • TTTA Wednesday-ORIGINAL REPORTING: The IRA And the EV Revolution
  • THE DAY BEFORE

  • Weekend Video: Coming Ocean Current Collapse Could Up Climate Crisis
  • Weekend Video: Impacts Of The Atlantic Meridional Overturning Current Collapse
  • Weekend Video: More Facts On The AMOC
  • THE DAY BEFORE THE DAY BEFORE

    WEEKEND VIDEOS, July 15-16:

  • Weekend Video: The Truth About China And The Climate Crisis
  • Weekend Video: Florida Insurance At The Climate Crisis Storm’s Eye
  • Weekend Video: The 9-1-1 On Rooftop Solar
  • THE DAY BEFORE THAT

    WEEKEND VIDEOS, July 8-9:

  • Weekend Video: Bill Nye Science Guy On The Climate Crisis
  • Weekend Video: The Changes Causing The Crisis
  • Weekend Video: A “Massive Global Solar Boom” Now
  • THE LAST DAY UP HERE

    WEEKEND VIDEOS, July 1-2:

  • The Global New Energy Boom Accelerates
  • Ukraine Faces The Climate Crisis While Fighting To Survive
  • Texas Heat And Politics Of Denial
  • --------------------------

    --------------------------

    Founding Editor Herman K. Trabish

    --------------------------

    --------------------------

    WEEKEND VIDEOS, June 17-18

  • Fixing The Power System
  • The Energy Storage Solution
  • New Energy Equity With Community Solar
  • Weekend Video: The Way Wind Can Help Win Wars
  • Weekend Video: New Support For Hydropower
  • Some details about NewEnergyNews and the man behind the curtain: Herman K. Trabish, Agua Dulce, CA., Doctor with my hands, Writer with my head, Student of New Energy and Human Experience with my heart

    email: herman@NewEnergyNews.net

    -------------------

    -------------------

      A tip of the NewEnergyNews cap to Phillip Garcia for crucial assistance in the design implementation of this site. Thanks, Phillip.

    -------------------

    Pay a visit to the HARRY BOYKOFF page at Basketball Reference, sponsored by NewEnergyNews and Oil In Their Blood.

  • ---------------
  • WEEKEND VIDEOS, August 24-26:
  • Happy One-Year Birthday, Inflation Reduction Act
  • The Virtual Power Plant Boom, Part 1
  • The Virtual Power Plant Boom, Part 2

    Wednesday, November 19, 2014

    TODAY’S STUDY: THE MIDWEST GRID IS READY FOR 40% NEW ENERGY

    Minnesota Renewable Energy Integration and Transmission Study Final Report

    October 31, 2014, (GE Energy Consulting, with The Minnesota Utilities and Transmission Companies, Excel Engineering, Inc., and MISO)

    Executive Summary

    Background…Study Objectives and Overall Approach…Development of Study Scenarios…Development of Transmission Conceptual Plans…Evaluation of Operational Performance…Dynamic Performance Analysis…

    Key Findings

    This study examined two levels of increased wind and solar generation for Minnesota; 40% (represented by Scenarios 1 and 1a) and 50% (represented by Scenarios 2 and 2a). In the 40% Minnesota Scenario, MISO North/Central is at 15% (current state RESs). The 50% Minnesota Scenario also included an increase of 10% (to 25%) in the MISO North/Central region. Production simulation was used to examine annual hourly operation of the MISO North/Central system for all four of these scenarios. Transient and dynamic stability analysis was conducted for Scenarios 1 and 1a but not on Scenarios 2 and 2a.

    General Conclusions for 40% RE Penetration in Minnesota

    With wind and solar resources increased to achieve 40% renewable energy for Minnesota and 15% renewable energy for MISO North/Central, production simulation and transient/dynamic stability analysis results indicate that the system can be successfully operated for all hours of the year with no unserved load, no reserve violations, and minimal curtailment of renewable energy. This assumes sufficient transmission mitigations, as described in Section 1.4, to accommodate the additional wind and solar resources.

    This is operationally achievable with most coal plants operated as baseload must-run units, similar to existing operating practice. It is also achievable if all coal plants are economically committed per MISO market signals, but additional analysis would be required to better understand implications, tradeoffs, and mitigations related to increased cycling duty.

    Dynamic simulation results indicate that there are no fundamental system-wide dynamic stability or voltage regulation issues introduced by the renewable generation assumed in Scenario 1 and 1a. This assumes:

    • New wind turbine generators are a mixture of Type 3 and Type 4 turbines with standard controls

    • The new wind and utility-scale solar generation is compliant with present minimum performance requirements (i.e. they provide voltage regulation/reactive support and have zero- voltage ride through capability)

    • Local-area issues are addressed through normal generator interconnection requirements

    General Conclusions for 50% RE Penetration in Minnesota

    With wind and solar resources increased to achieve 50% renewable energy in Minnesota and 25% renewable energy in MISO, production simulation results indicate that the system can be successfully operated for all hours of the year with no unserved load, no reserve violations, and minimal curtailment of renewable energy. This assumes sufficient transmission upgrades, expansions and mitigations to accommodate the additional wind and solar resources.

    This is operationally achievable with most coal plants operated as baseload must-run units, similar to existing operating practice. It is also achievable if all coal plants are economically committed per MISO market signals, but additional analysis would be required to better understand implications, tradeoffs, and mitigations related to increased cycling duty.

    No dynamic analysis was performed for the study scenarios with 50% renewable energy for Minnesota (Scenarios 2 and 2a) due to study schedule limitations and this analysis is necessary to ensure system reliability.

    Annual Energy in the Minnesota-Centric Region

    Figure 1-1 shows the annual load and generation energy by type for the Minnesota-Centric region. Comparing Scenarios 1 and 1a (40% MN renewables) with the Baseline,

    • Wind and solar energy increases by 8.5 TWh, all of which contributes to bringing the State of Minnesota from 28.5% RE penetration to 40% RE penetration

    • There is very little change in energy from conventional generation resources

    • Most of the increase in wind and solar energy is balanced by a decrease in imports. The Minnesota-Centric region goes from a net importer to a net exporter.

    Comparing Scenarios 2 and 2a (50% MN renewables) with Scenarios 1 and 1a (40% MN renewables),

    • Wind and solar energy increases by 20 TWh. Of this total, 4.8 TWh brings the State of Minnesota from 40% to 50% RE penetration and the remainder contributes to bringing MISO from 15% to 25% RE penetration

    • Most of the increase in wind and solar energy in the Minnesota-Centric region is balanced by a decrease in coal generation and an increase in net exports to neighboring regions • Gas-fired, combined-cycle generation declines from 5.0 TWh in Scenario 1 to 3.0 TWh in Scenario 2.

    Cycling of Thermal Plants

    Most coal plants were originally designed for baseload operation; that is, they were intended to operate continuously with only a few start/stop cycles in a year (mostly due to scheduled or forced outages). Increased cycling duty could increase wear and tear on these units, with corresponding increases in maintenance requirements. Many coal plants in MISO presently are designated by the plant’s owner to operate as “must-run” in order to avoid start/stop cycles that would occur if they were economically committed by the market.

    Scenarios S1a and S2a assumed that all coal plants in MISO are subject to economic commitment/dispatch (i.e., not must-run) based on day-ahead forecasts of load, wind and solar energy within MISO. Production simulation results show significant coal plant cycling due to economic market signals:

    • Small coal units (below 300 MW rating) could have an additional 100 to 200 starts per year, beyond those due to forced or planned outages.

    • Large coal units (above 300 MW) could have an additional 20 to 100 starts per year

    Scenarios S1 and S2 assumed almost all coal plants would continue to operate as they do today. Coal units were on-line all year (except for scheduled maintenance periods) and were not decommitted during periods of low market prices. The results of these scenarios confirmed that the coal units could remain must-run with minor impacts on overall operation of the Minnesota-Centric region. Coal plant owners could choose to continue the must-run practice to avoid the detrimental impacts of increased cycling as wind and solar penetration increases. Doing so would likely incur some additional operational costs when energy prices fall below a plant’s breakeven point. Wind curtailment would also be about 0.5% higher than if the coal plants were economically committed.

    An attractive solution to the coal plant cycling issue may exist between the two bookend cases analyzed in this study. Scenarios 1a and 2a assumed that unit commitment was determined on a day-ahead basis, using day-ahead forecasts of wind and solar energy. The result was a high number of start/stop cycles of coal plants, sometimes with down-times of less than 2 days. If the unit commitment process was modified to use a longer term forward market (say 3 to 5 days ahead), then coal plant owners could adjust their operational strategy to consider decommitting units when prolonged periods of high wind/solar generation and low system loads are forecasted. A forward market would depend on longer term forecasts of wind, solar and load energy, consistent with the look-ahead period of the market. Although such forecasts would be somewhat less accurate than day-ahead forecasts, the quality of the forecasts would likely be adequate to support such unit commitment decisions.

    This study did not examine the economic or wear-and-tear impacts of increased cycling on coal units. Further information on this topic can be found in the NREL Western Wind and Solar Integration Study Phase 2 report7 and the PJM Renewable Integration Study report8. Combined-cycle (CC) units are better able to accommodate cycling duties than coal plants. Simulation results show that combined cycle units in the Minnesota-Centric region experience from 50 to 200 start/stop cycles per year. Cycling of CC units declines slightly as wind and solar penetration increases. This decline is primarily due to a decrease in CC plant utilization as wind and solar energy increases.

    Curtailment of Wind and Solar Energy

    In general, a small amount of curtailment is to be expected in any system with a significant level of wind and solar generation. There are some operating conditions where it is economically efficient to accept a small amount of curtailment (i.e., mitigation of that curtailment would be disproportionately expensive and not justifiable).

    Overall curtailment in the Minnesota-Centric region is relatively small in all study scenarios, as shown in Table 1-2. Wind curtailment in Baseline and Scenario 1 is primarily due to local transmission congestion at a few wind plants. This congestion could be mitigated by transmission modifications, if economically justifiable.

    Wind curtailment in Scenario 2 is due to system-wide operational limits during nighttime hours, when many baseload generators are dispatched to their minimum output levels. This type of curtailment could be reduced by decommitting some baseload generation via economic market signals. The effectiveness of this mitigation option is illustrated by comparing Scenario 2 (coal units must-run) with Scenario 2a (economic coal commitment). Wind curtailment decreases from 2.14% to 1.60% (reduction of 332 GWh of wind curtailment). Solar curtailment decreases from 0.42% to 0.24% (reduction of 12 GWh of solar curtailment).

    Other Operational Issues

    No significant transmission system congestion was observed in any of the study scenarios with the assumed transmission upgrades and expansions. Transmission contingency conditions were considered in both the powerflow analysis used to develop the conceptual transmission system and the security-constrained economic dispatch in the production simulation analysis.

    Ramp-range-up and ramp-rate-up capability of the MISO conventional generation fleet increases with increased penetration of wind and solar generation. Conventional generation is generally dispatched down rather than decommitted when wind and solar energy is available, which gives those generators more headroom for ramping up if needed.

    Ramp-range-down and ramp-rate-down capability of the MISO conventional generation fleet decreases with increased penetration of wind and solar generation. In Scenario 2, there are 500 hours when ramp-rate-down capability of the conventional generation fleet falls below 100 MW/min. Periods of low ramp-down capability coincide with periods of high wind and solar generation. Wind and solar generators are capable of providing ramp-down capability during these periods. MISO’s existing Dispatchable Intermittent Resource (DIR) process already enables this for wind generators. It is anticipated that MISO would expand the DIR program to include solar plants in the future.

    System Stability, Voltage Support, Dynamic Reactive Reserves

    No angular stability, oscillatory stability or wide-spread voltage recovery issues were observed over the range of tested study conditions. The 16 dynamic disturbances used in stability simulations included key traditional faults/outages as well as faults/outages in areas with high concentrations of renewables and high inter-area transmission flows. System operating conditions included light load, shoulder load and peak load cases, each with the highest percent renewable generation periods in the Minnesota-Centric region.

    Overall dynamic reactive reserves are sufficient and all disturbances examined for Scenarios 1 and 1a show acceptable voltage recovery. The South & Central and Northern Minnesota regions get the majority of their dynamic reactive support from synchronous generation. Maintaining sufficient dynamic reserves in these regions is critical, both for local and system-wide stability.

    Southwest Minnesota, South Dakota and at times Iowa get a significant portion of dynamic reactive support from wind and solar resources. Wind and Solar resources contribute significantly to voltage support/dynamic reactive reserves. The fast response of wind/solar inverters helps voltage recovery following transmission system faults. However, these are current-source devices with little or no overload capability. Their reactive output decreases when they reach a limit (low voltage and high current).

    Synchronous machines (either generators or synchronous condensers), on the other hand, are voltage-source devices with high overload capability. This characteristic will strengthen the system voltage, allowing better utilization of the dynamic capability of renewable generation. The mitigation methods discussed below, namely stiffening the ac system through new transmission or synchronous machines, will also address this concern.

    Local load areas, such as the Silver Bay and Taconite Harbor area, require reactive support from synchronous machines due to the high level of heavy industrial loads. If all existing synchronous generation in this region is off line (i.e. due to retirement or decommitment), reinforcements such as new transmission or synchronous condensers would be required to support the load.

    Dynamic simulation results indicate that it is critical to maintain sufficient system strength and dynamic reserves to support high flows on the Northern Minnesota 500 kV lines and Manitoba high-voltage direct-current (HVDC) lines. Insufficient system strength and reactive support will limit Manitoba exports to the U.S. Existing transmission expansion plans, as modeled in this analysis, address these issues and are sufficient for the anticipated levels of Manitoba exports.

    The Manitoba HVDC ties and the 500 kV transmission system in Northern Minnesota require reactive support from synchronous generators, the Dorsey and Riel synchronous condensers, and the Forbes static var compensator (SVC) to maintain the expected level of Manitoba exports. Without sufficient reactive reserves, the system could be unstable for nearby transmission disturbances. The current transmission plans, as modeled in this analysis, address this issue.

    Weak System Issues

    Composite Short-Circuit Ratio (CSCR) is an indicator of the ability of an ac transmission system to support stable operation of inverter-based generation. A system with a higher CSCR is considered strong and a system with a lower CSCR is considered to be weak. CSCR is calculated as the ratio of the composite short-circuit MVA at the points of interconnection (POI) of all wind/solar plants in a given area to the combined MW rating of all those wind and solar generation resources.

    Low CSCR operating conditions can lead to control instabilities in inverter-based equipment (Wind, Solar PV, HVDC and SVC). Instabilities of this nature will generally manifest as growing voltage/current oscillations at the most affected wind or solar plants. In the worst conditions (i.e., very low CSCR), oscillations could become more wide-spread and eventually lead to loss of generation and/or damage to renewable generation equipment if not adequately protected against such events.

    This is a relatively new area off concern within the industry. The issue has emerged as the penetration of wind generation has grown. Understanding of the fundamental stability issues is rapidly growing as more wind plants are being installed in regions with weak ac systems.

    Equipment vendors, transmission planners and consultants are all working to gain a better understanding of the issues. Modeling and simulation tools have already been developed to enable detailed analysis of the phenomena. Wind and solar inverter control systems are being modified to improve weak system performance.

    Synchronous machines (either generators or synchronous condensers) contribute short-circuit strength to the transmission system and therefore increase CSCR. Therefore, system operating conditions with more synchronous generators online will have higher CSCR. Also, stronger transmission ties (additional transmission lines or transformers, or lower impedance transformers) between synchronous generation and regions of wind and solar generation will increase CSCR. SVCs and STATCOMs do not contribute short-circuit current, and because they are electronic converter based devices with internal control systems similar to wind/solar inverters, their presence in a weak system region could further reduce the effective CSCR and exacerbate the control system stability issues that occur in weak system conditions.

    There are two general situations where weak system issues generally need to be assessed:

    • Local pockets of a few wind and solar plants in regions with limited transmission and no nearby synchronous generation (e.g. plants in North Dakota fed from Pillsbury 230 kV near Fargo).

    • Larger areas such as Southwest Minnesota (Buffalo Ridge area) with a very high concentration of wind and solar plants and no nearby synchronous generation

    This study examined the sensitivity of weak system issues in Southwest Minnesota. Observations are as follows:

    The trouble spots identified in this analysis are not very sensitive to existing synchronous generation commitment. While there is very little synchronous generation within the area, the region is supported by a strong networked 345 kV transmission grid. Primary short circuit strength is from a wide range of base-load units in neighboring areas, and interconnected via the 345 kV transmission network. Commitment, decommittment or outages of individual synchronous generators do not have significant impact on CSCR in these identified areas.

    Transmission outages will lower system strength and make the issue worse. When performing CSCR and weak system assessments as wind and solar penetration increases, it will be prudent to consider normal and design-criteria outages at a minimum (i.e, outage conditions consistent with MISO reliability assessment practices).

    Mitigations

    There are two approaches to improving wind/solar inverter control stability in weak system conditions:

    • To improve the inverter controls, either by carefully tuning the equipment control functions or modifying the control functions to be more compatible with weak system conditions. With this approach, wind/solar plants can tolerate lower CSCR conditions.

    • To strengthen the ac system, resulting in increased short-circuit MVA at the locations of the wind/solar plants. This approach increases CSCR.

    The approaches are complementary, so the ultimate solution for a particular region would likely be a combination of both.

    Mitigation through Wind/PV Inverter Controls

    Standard inverter controls and setting procedures may not be sufficient for weak system applications. Loop gains of internal control functions inherently increase when system impedance increases, thereby reducing the stability margin of the controllers. Developers and equipment vendors must be made aware when new plants are being proposed for weak system regions so they can design/tune controls to address the issue. Wind plant vendors have made significant progress in designing wind and solar plant control systems that are compatible with weak system applications.

    This approach becomes somewhat more difficult when there are wind/solar plants from multiple vendors in one region. The level of analysis requires detailed modeling of all affected wind plants at a level of detail that requires the use of proprietary control design information from the vendors. Vendors are very reluctant to share such data, except with independent consultants who can guarantee strict data security. However, this approach is gaining traction and a few projects have made effective implementations. The key to success is that project developers and equipment vendors must be informed beforehand that a given wind or solar plant will be installed at a weak system location. This enables the appropriate control design studies to be initiated before the project is installed.

    In the event that such control-based approaches are not sufficient, it would be possible to further improve weak system performance by employing one or more of the system-level mitigations discussed below.

    Mitigation by Strengthening the AC System

    CSCR analysis of the Southwest Minnesota region shows that synchronous condensers located near the wind and solar plants would be a very effective mitigation for weak system issues. Synchronous condensers are synchronous machines that have the same voltage control and dynamic reactive power capabilities as synchronous generators. Synchronous condensers are not connected to prime movers (e.g. steam turbines or combustion turbines), so they do not generate power.

    Other approaches that reduce ac system impedance could also offer some benefit:

    • Additional transmission lines between the wind/solar plants and synchronous generation plants

    • Lower impedance transformers, including wind/solar plant interconnection transformers

    Series capacitors on transmission lines could be used to increase CSCR and to improve the transmission system’s capability to transfer energy out of regions with high concentrations of wind and solar resources. However, series capacitors create subsynchronous frequency resonances in the transmission system which affect the performance of control systems within wind and solar plants. These resonances introduce an additional challenge to wind/solar plant control designs, which must maintain stable operation in the presence of the resonant conditions.Mitigation through “must-run” operating rules for existing generation was found to be not very effective. The plants with synchronous generators are not located close enough to effected wind/solar plants.

    0 Comments:

    Post a Comment

    << Home