NewEnergyNews: TODAY’S STUDY: Scale Push for Offshore Wind Could Cut Price 55%


Gleanings from the web and the world, condensed for convenience, illustrated for enlightenment, arranged for impact...

The challenge now: To make every day Earth Day.


  • FRIDAY WORLD HEADLINE-Climate Change Is Driving People Nuts
  • FRIDAY WORLD HEADLINE-China Leading The Global Wind Boom
  • FRIDAY WORLD HEADLINE-Harvesting The Riches Of Africa’s Deserts
  • FRIDAY WORLD HEADLINE-Big Oil Faces Up To Cars With Plugs


  • TTTA Thursday-Inside The White House Fight On Climate
  • TTTA Thursday-New Energy Is The Jobs Engine
  • TTTA Thursday-Wind Industry Boom Getting Bigger
  • TTTA Thursday-Funding Better Transportation

  • ORIGINAL REPORTING: Mixed-ownership models spur utility investment in microgrids
  • ORIGINAL REPORTING: How the wind industry can continue its boom into the 2020s
  • ORIGINAL REPORTING: Rhode Island targets a common perspective on DER values

  • TODAY’S STUDY: The Way To Grow EVs
  • QUICK NEWS, April 25: Private Sector Takes Over The Climate Fight; How Sea Level Rise Would Change The Map; Wind Jobs Top 100,000 As Wind Energy Booms

  • TODAY’S STUDY: The Risk Of Natural Gas Vs. The Risk Of Wind
  • QUICK NEWS, April 24: The Health Impacts Of Climate Change; New Energy Is Everywhere; Study Shows LA Does Not Need Aliso Canyon

  • Weekend Video: How To Win Friends For New Energy
  • Weekend Video: The Electric Vehicle Highway
  • Weekend Video: Wind And The Economy
  • --------------------------


    Anne B. Butterfield of Daily Camera and Huffington Post, f is an occasional contributor to NewEnergyNews


    Some of Anne's contributions:

  • Another Tipping Point: US Coal Supply Decline So Real Even West Virginia Concurs (REPORT), November 26, 2013
  • SOLAR FOR ME BUT NOT FOR THEE ~ Xcel's Push to Undermine Rooftop Solar, September 20, 2013
  • NEW BILLS AND NEW BIRDS in Colorado's recent session, May 20, 2013
  • Lies, damned lies and politicians (October 8, 2012)
  • Colorado's Elegant Solution to Fracking (April 23, 2012)
  • Shale Gas: From Geologic Bubble to Economic Bubble (March 15, 2012)
  • Taken for granted no more (February 5, 2012)
  • The Republican clown car circus (January 6, 2012)
  • Twenty-Somethings of Colorado With Skin in the Game (November 22, 2011)
  • Occupy, Xcel, and the Mother of All Cliffs (October 31, 2011)
  • Boulder Can Own Its Power With Distributed Generation (June 7, 2011)
  • The Plunging Cost of Renewables and Boulder's Energy Future (April 19, 2011)
  • Paddling Down the River Denial (January 12, 2011)
  • The Fox (News) That Jumped the Shark (December 16, 2010)
  • Click here for an archive of Butterfield columns


    Some details about NewEnergyNews and the man behind the curtain: Herman K. Trabish, Agua Dulce, CA., Doctor with my hands, Writer with my head, Student of New Energy and Human Experience with my heart




      A tip of the NewEnergyNews cap to Phillip Garcia for crucial assistance in the design implementation of this site. Thanks, Phillip.


    Pay a visit to the HARRY BOYKOFF page at Basketball Reference, sponsored by NewEnergyNews and Oil In Their Blood.

  • ---------------
  • WEEKEND VIDEOS, April 29-30:

  • Finding Common Ground
  • Go To Work In Wind
  • The Promise Of Robot Cars

    Tuesday, March 22, 2016

    TODAY’S STUDY: Scale Push for Offshore Wind Could Cut Price 55%

    Massachusetts Offshore Wind Future Cost Study

    Kempton, McClellan, Ozkan, March 2016 (University of Delaware Special Initiative for Offshore Wind)

    Executive Summary

    This study models the cost of electricity from 2,000 MW of offshore wind energy, deployed off the coast of Massachusetts throughout the period 2020-2030. We find that costs will be far lower than previously contracted prices for offshore wind in the New England region and that costs will continuously lower throughout a buildout during the decade, due to ongoing technology and industry advances and the effects of making a Massachusetts market visible to the industry.

    The “levelized cost of energy” (LCOE) was above 24¢/kWh for previously contracted projects in New England including the Cape Wind project proposed for Massachusetts and the Block Island Wind farm off the coast of Rhode Island – the latter is currently in construction and will be the US’s first-built offshore wind farm.1 The results of the modeled 2,000 MW build-out show, first, that the LCOE for the initial offshore wind project -- 16.2¢/kWh -- will be much lower than projects to date. Second, the study shows that costs continue to decline in subsequent builds, so that by the last tranche of a 2,000 MW pipeline of projects, the LCOE reaches 10.8¢. Table ES-1 below displays the LCOE’s across the analyzed build-out, with and without transmission costs included, and including learning effects.

    The metric of this study is calculated LCOE, which does not consider any Federal production tax credit, state renewable energy credits (RECs) or potential carbon fees, any of which would lower the actual price below our LCOE projection. The study does not address the overall comparative value of the technology versus other ways of producing electricity. This is because LCOE does not consider system benefits, job creation, environmental, or health benefits, any of which would improve the relative cost of offshore wind power.

    In addition to the anticipated technology improvements that will lower the cost of offshore wind energy through the next decade, the primary mechanism of the observed downward trajectory illustrated in Table ES-1 is development of offshore wind at scale. Commitment to scale provides “market visibility” to the industry, which lowers cost over time. Table ES-2 illustrates two recent one-off project proposals in the area, compared with three tranches of the modeled pipeline of 2,000 MW. Compare in particular the first and third lines, 468 and 400 MW, two projects of about the same size. Tranche C benefits from subsequent technology improvements, but also benefits from the much greater market visibility, the two effects together generating the substantial reduction in LCOE seen in the last column.

    Market visibility reduces cost by generating competition among developers and their suppliers and by creating a community of experienced project investors who see less risk and thus expect lower rates of return. Market visibility is achieved by government policy that commits to the build-out of a sequence of projects, as opposed to a policy for one single project, which has been previously seen in Massachusetts and other East coast states. Also, building a series of projects leads to experienced workforce for subsequent projects, which becomes more efficient as they learn by doing.

    From the authors’ previous work on cost reduction and U.S. state policy, there are potentially additional cost savings unrelated to scale that can be affected by state policy that further reduce risk. The provision of site characteristic data, requiring winning bidders to share certain information in advance of future builds, and investing in infrastructure and workforce development, all are policy options that can reduce cost, but were not analyzed in this study.

    As a check on the results, we benchmarked our LCOE results with two studies that report costs and cost trends seen in Europe. The cost trend for Massachusetts’s projects is consistent with the trend line of declining cost among recent and planned European projects. The first Massachusetts tranche analyzed yields a LCOE that is still at the high end of European cost projections. By the end of the last tranche of a 2,000 MW pipeline, Massachusetts LCOEs have reached a price range that is competitive in today’s U.S. market.

    To conduct the study, we elicited estimates of each of the major costs of developing, building, financing, and operating an offshore wind project—from industry experts who are actively creating or receiving bids for components and services for projects in the region. This set of inputs was used to calculate LCOE.

    Collecting forward-looking data from industry participants involved in a particular market differs from the approach of most prior studies, which estimate future costs from already-built projects in Europe. Because it can require six years from conceiving to financing, to building, to operating an offshore wind project, using already-built projects to infer costs of future projects just now conceived would give data as much as 12 years out of date--misleading in a rapidly-changing field of technology and industrial development…


    To reliably project the cost of a rapidly-changing technology in the future, for example, a project that would be built and commissioned about six years ahead of the analysis, we developed an expert elicitation method. We solicited confidential expert estimates of each of the major costs of developing, building, financing, and operating an offshore wind tranche, then arrived at a weighted mean of those estimates and used the mean values as input to the public-domain CREST tool to produce the LCOE for each Tranche. We added the cost of a simple transmission solution, without eliciting data for that component.

    We found that our projected costs are consistent with two published benchmarks, and show a trend line of declining cost over the 2020-2030 period due to the factors cited. The LCOE for the first tranche begins with an electricity price above today’s market. Costs continue to decline in subsequent builds, so that by the last tranche of a 2,000 MW pipeline, costs are similar to today’s market cost, and at that point the technology presumably could continue to compete on its own without any continuing legislation. Dividing the decade into three tranches, LCOE costs with learning effects on installation and operations and maintenance were 12¢, 9.8¢ and 7.8¢ per kWh, or including transmission were 16.2¢, 12.8¢ and 10.8¢ per kWh. Again, these are calculated LCOE, which does not consider any Federal tax credit, state RECs or potential carbon fees, any of which would lower the actual price below our LCOE projection.

    The cost reductions are driven by state policy committing to build a sequence, of projects as well as “learning effects,” as develops skilled workfore grows locally as the Massachusetts market develops.

    The forecasts here are based upon the expansion of existing technologies. Wind technology, however, is still young. The knowledge base and creativity in Massachusetts higher education and R&D sectors could well have a role to play in innovating and creating a new generation of offshore wind turbines.


    Post a Comment

    << Home