NewEnergyNews: TODAY’S STUDY: Global New Energy Right Now

NewEnergyNews

Gleanings from the web and the world, condensed for convenience, illustrated for enlightenment, arranged for impact...

While the OFFICE of President remains in highest regard at NewEnergyNews, this administration's position on climate change makes it impossible to regard THIS president with respect. Below is the NewEnergyNews theme song until 2020.

The challenge now: To make every day Earth Day.

YESTERDAY

  • FRIDAY WORLD HEADLINE-Ten Billion Tree Movement Hits One Million Mark
  • FRIDAY WORLD HEADLINE-Double New Energy And EU Economy Can Boom
  • FRIDAY WORLD HEADLINE-Netherlands Building Solar On The Sea
  • FRIDAY WORLD HEADLINE-Norway’s Floating Wind Gets 65% Capacity Factor
  • THE DAY BEFORE

    THINGS-TO-THINK-ABOUT THURSDAY, February 22:

  • TTTA Thursday-Using Music In The Climate Fight
  • TTTA Thursday-Biggest U.S. Wind Nears Go In Oklahoma
  • TTTA Thursday-Wave Power From The Heart
  • TTTA Thursday-EVs Are A Win For Everybody
  • THE DAY BEFORE THE DAY BEFORE

  • ORIGINAL REPORTING: Common Ground In Texas On How To Drive Utilities To New Energy
  • ORIGINAL REPORTING: Are Electricity Customers Ready For Dynamic Pricing?
  • THE DAY BEFORE THAT

  • TODAY’S STUDY: Using Economics To Grow Energy Efficiency Habits
  • QUICK NEWS, February 20: Cities’ Climate Fight Sets Goals; Solar On Every Roof; Wave Power For Ocean Water Desalination
  • THE LAST DAY UP HERE

  • TODAY’S STUDY: Rewarding Utilities For Giving Customers What Customers Want
  • QUICK NEWS, February 19: The Campaign To Get Conservatives To Fight Climate Change; A Perfect Match Of Distribute Energy And The Grid; U.S. Navy Moves On Wave Energy
  • --------------------------

    --------------------------

    Founding Editor Herman K. Trabish

    --------------------------

    --------------------------

    Some details about NewEnergyNews and the man behind the curtain: Herman K. Trabish, Agua Dulce, CA., Doctor with my hands, Writer with my head, Student of New Energy and Human Experience with my heart

    email: herman@NewEnergyNews.net

    -------------------

    -------------------

      A tip of the NewEnergyNews cap to Phillip Garcia for crucial assistance in the design implementation of this site. Thanks, Phillip.

    -------------------

    Pay a visit to the HARRY BOYKOFF page at Basketball Reference, sponsored by NewEnergyNews and Oil In Their Blood.

  • ---------------
  • WEEKEND VIDEOS, February 24-25:

  • Why New Energy Works For Everybody
  • How To Talk Climate Change With Conservatives
  • The Future Of Wind

    Tuesday, January 23, 2018

    TODAY’S STUDY: Global New Energy Right Now

    Renewable Power Generation Costs in 2017

    January 2018 (International Renewable Energy Agency)

    Key Findings

    • After years of steady cost decline for solar and wind technologies, renewable power is becoming an increasingly competitive way to meet new generation needs.

    • For projects commissioned in 2017, electricity costs from renewable power generation have continued to fall.

    • Bioenergy-for-power, hydropower, geothermal and onshore wind projects commissioned in 2017 largely fell within the range of generation costs for fossil-based electricity.1 Some projects undercut fossil fuels, data collected by the International Renewable Energy Agency (IRENA) shows.

    • The global weighted average cost of electricity was USD 0.05 per kilowatt-hour (kWh) from new hydropower projects in 2017. It was USD 0.06/kWh for onshore wind and 0.07/kWh for bioenergy and geothermal projects.

    • The fall in electricity costs from utility-scale solar photovoltaic (PV) projects since 2010 has been remarkable. The global weighted average levelised cost of electricity (LCOE) of utilityscale solar PV has fallen 73% since 2010, to USD 0.10/kWh for new projects commissioned in 2017.

    • Three key cost reduction drivers are becoming increasingly important: 1. technology improvements; 2. competitive procurement; 3. a large base of experienced, internationally active project developers.

    • Continuous technological innovation remains a constant in the renewable power generation market. With today’s low equipment costs, however, innovations that unlock efficiencies in manufacturing, reduce installed costs or improve performance for power-generation equipment will take on increasing significance.

    • These trends are part of a broader shift across the power generation sector to low-cost renewables. As competitive procurement drives costs lower, a wide range of project developers are positioning themselves for growth.

    • The results of recent renewable power auctions – for projects to be commissioned in the coming years – confirm that cost reductions are set to continue through 2020 and beyond. Auctions provide valuable price signals about future electricity cost trends.

    • Record low auction prices for solar PV in Dubai, Mexico, Peru, Chile, Abu Dhabi and Saudi Arabia in 2016 and 2017 confirm that the LCOE can be reduced to USD 0.03/kWh from 2018 onward, given the right conditions.

    • Onshore wind is one of the most competitive sources of new generation capacity. Recent auctions in Brazil, Canada, Germany, India, Mexico and Morocco have resulted in onshore wind power LCOEs as low as USD 0.03/kWh.

    • The lowest auction prices for renewable power reflect a nearly constant set of key competitiveness factors. These include: a favourable regulatory and institutional framework; low offtake and country risks; a strong, local civil engineering base; favourable taxation regimes; low project development costs; and excellent resources.

    • Electricity from renewables will soon be consistently cheaper than from most fossil fuels. By 2020, all the renewable power generation technologies that are now in commercial use are expected to fall within the fossil fuel-fired cost range, with most at the lower end or undercutting fossil fuels.

    • The outlook for solar and wind electricity costs to 2020 presages the lowest costs yet seen for these modular technologies, which can be deployed around the world. Based on the latest auction and project-level cost data, global average costs could decline to about USD 0.05/kWh for onshore wind and USD 0.06/kWh for solar PV.

    • Auction results suggest that concentrating solar power (CSP) and offshore wind will provide electricity for between USD 0.06 and USD 0.10/kWh by 2020.

    • Falling renewable power costs signal a real paradigm shift in the competitiveness of different power generation options. This includes cheaper electricity from renewables as a whole, as well as the very low costs now being attained from the best solar PV and onshore wind projects.

    • Sharp cost reductions – both recent and anticipated – represent remarkable deflation rates for various solar and wind options. Learning rates2 for the 2010-2020 period, based on project and auction data, are estimated at 14% for offshore wind, 21% for onshore wind, 30% for CSP and 35% for solar PV.

    • Reductions in total installed costs are driving the fall in LCOE for solar and wind power technologies to varying extents. This has been most notable for solar PV, CSP and onshore wind.

    Executive Summary

    For new projects commissioned in 2017, electricity costs from renewable power generation have continued to fall. After years of steady cost decline, renewable power technologies are becoming an increasingly competitive way to meet new generation needs.

    In 2017, as deployment of renewable power generation technologies accelerated, there has been a relentless improvement in their competitiveness. Bioenergy for power, hydropower, geothermal and onshore wind projects commissioned in 2017 largely fell within the range of fossil fuel-fired electricity generation costs (Figure ES.1), data collected by the International Renewable Energy Agency (IRENA) shows. Indeed levelised cost of electricity (LCOE)1 for these technologies was at the lower end of the LCOE range for fossil fuel options.2

    The global weighted average LCOE of new hydropower plants commissioned in 2017 was around USD 0.05 per kilowatt-hour (kWh), while for onshore wind plants it was around USD 0.06/kWh. For new bioenergy and geothermal projects, the global weighted average LCOE was around USD 0.07/kWh.

    The fall in electricity costs from utility-scale solar photovoltaic (PV) projects since 2010 has been remarkable. Driven by an 81% decrease in solar PV module prices since the end of 2009, along with reductions in balance of system (BoS) costs, the global weighted average LCOE of utility-scale solar PV fell 73% between 2010 and 2017, to USD 0.10/kWh. Increasingly, this technology is competing headto-head with conventional power sources – and doing so without financial support.

    Offshore wind power and concentrated solar power (CSP), though still in their infancy in terms of deployment, both saw their costs fall between 2010 and 2017. The global weighted average LCOE of offshore wind projects commissioned in 2017 was USD 0.14/kWh, while for CSP, it was USD 0.22/kWh. However, auction results in 2016 and 2017, for CSP and offshore wind projects that will be commissioned in 2020 and beyond, signal a step-change, with costs falling to between USD 0.06 and USD 0.10/kWh for CSP and offshore wind.

    Three main cost reduction drivers have emerged for renewable power: 1) technology improvements; 2) competitive procurement; and 3) a large base of experienced, internationally active project developers.

    Historically, technology improvements have been vital to the performance increases and installed cost reductions which have (in addition to industrialisation of the sector and economies of scale) made solar and wind power technologies competitive. Competitive procurement — amid globalisation of the renewable power market — has emerged more recently as another key driver. Along with this comes the emergence of a large base of experienced medium-to-large project developers, actively seeking new markets around the world. The confluence of these factors is increasingly driving cost reductions for renewables, with effects that will only grow in magnitude in 2018 and beyond.

    Continuous technology innovation remains a constant in the renewable power generation market. Indeed, in today’s low equipment cost era, technology innovations that unlock efficiencies in manufacturing, as well as power generation equipment — in terms of performance improvements or installed cost reductions — will take on increasing importance. Bigger wind turbines with larger swept areas harvest more electricity from the same resource. New solar PV cell architectures offer greater efficiency. Real-time data and ‘big data’ have enhanced predictive maintenance and reduced operation and maintenance (O&M) costs. These are just a few examples of the continuous innovation driving reductions in installed costs, unlocking performance improvements and reducing O&M costs. Technology improvements, therefore, remain a key part of the cost reduction potential for renewable power. At the same time, the maturity and proven track record of renewable power technologies now reduces project risk, significantly lowering the cost of capital.3

    These trends are part of a larger dynamic across the power generation sector, prompting a rapid transition in the way the industry functions. In many parts of the world, renewable power technologies now offer the lowest cost source of new power generation. In the past, typically, there was a framework offering direct financial support, often tailored to individual technologies (e.g., solar PV) and even segments (e.g., varying support for residential, commercial and utility-scale sectors, sometimes differentiated by other factors such as whether they are building-integrated or not). Now, this is being replaced by a favourable regulatory and institutional framework that sets the stage for competitive procurement of renewable power generation to meet a country’s energy, environmental and development policy goals. Around the world, medium-to-large renewable project developers are adapting to this new reality and increasingly looking for global opportunities to expand their business. They are bringing, not only their hard won experience, but access to international capital markets. In competition with their peers, they are finding ways to continuously reduce costs.

    The results of recent renewable power auctions – for projects to be commissioned in the coming years – confirm that cost reductions are set to continue to 2020 and beyond.

    In addition to the IRENA Renewable Cost Database, which contains project level cost data for around 15 000 utility-scale projects, IRENA has compiled a database of auction results and other competitive procurement processes for around 7 000 projects. Although care must be taken in comparing the results of these two databases, as an auction price is not necessarily directly comparable to an LCOE calculation,4 analysis of the results of the two databases provides some important insights into the likely distribution of renewable electricity costs over the next few years.

    Record low auction prices for solar PV in 2016 and 2017 in Dubai, Mexico, Peru, Chile, Abu Dhabi and Saudi Arabia have shown that an LCOE of USD 0.03/ kWh is possible from 2018 and beyond, given the right conditions. These include: a regulatory and institutional framework favourable to renewables; low offtake and country risks; a strong, local civil engineering base; favourable taxation regimes; low project development costs; and excellent solar resources.

    Similarly, very low auction results for onshore wind in countries such as Brazil, Canada, Germany, India Mexico and Morocco have shown that onshore wind is one of the most competitive sources of new generation capacity. For CSP and offshore wind, 2016 and 2017 have been breakthrough years, as auction results around the world have confirmed that a step change in costs has been achieved and will be delivered in projects commissioned in 2020 and beyond. Indeed, auction results in 2016 and 2017 suggest that projects commissioned from 2020 onwards for both technologies could fall in the range USD 0.06 and USD 0.10/kWh.

    Competitive procurement, particularly auctions, is spurring further cost reductions for power from solar and wind power technologies. Still, achieving low costs depends on supporting factors, such as access to low-cost finance, a conducive policy environment and good auction design. The key policy drivers (outlined in IRENA, 2017,

    Renewable Energy Auctions: Analysing 2016) are confirmed by the latest auction results. Electricity from renewables will soon be consistently cheaper than from fossil fuels. By 2020, all the power generation technologies that are now in commercial use will fall within the fossil fuel-fired cost range, with most at the lower end or even undercutting fossil fuels.

    Even by 2020, projects contracted via competitive procurement will represent a relatively small subset of annual new renewable power generation capacity additions – and trends in auction results may not remain representative of LCOE trends at a project level. Nevertheless, recent auction results show that cost reductions will continue for CSP, solar PV, onshore and offshore wind through 2020 and beyond. While the validity of comparing LCOE and auction prices for individual projects must be done with caution, the volume of data available and the consistent trends between the two datasets provide some confidence in the overall trend.

    Analysing the the trends in the LCOE of projects and auction results to 2020 suggests that average costs for onshore wind could fall from USD 0.06/kWh in 2017 to USD 0.05/kWh by 2020. The recent auction results for offshore wind from 2016 and 2017 in Belgium, Denmark, the Kingdom of the Netherlands, Germany and the United Kingdom suggest that for projects that will be commissioned in 2020 and beyond, costs could fall in the USD 0.06 to USD 0.10/kWh range. Indeed, in Germany, two projects that will be commissioned in 2024 and one in 2025 won with bids that did not ask for a subsidy over market rates. A similar story has emerged for CSP, where a project in South Australia to be commissioned from 2020 will have a cost of USD 0.06/kWh, while in Dubai, a project that will be commissioned from 2022 onwards will have a cost of USD 0.07/kWh.

    Solar PV auction data needs to be treated with somewhat more caution. This is because the distribution of projects is concentrated in higherirradiation locations than recent capacity-weighted deployment. Even so, if the auction results available do accurately represent global deployment trends, then by 2019 or 2020, the average LCOE for solar PV may fall to below USD 0.06/ kWh, converging to slightly above that of onshore wind, at USD 0.05/kWh.

    The outlook for solar and wind electricity costs to 2020, based on the latest auction and projectlevel cost data, presages the lowest costs yet seen for these modular technologies that can be deployed around the world.

    By 2019, the best onshore wind and solar PV projects will be delivering electricity for an LCOE equivalent of USD 0.03/kWh, or less, with CSP and offshore wind capable of providing electricity very competitively, in the range of USD 0.06 to USD 0.10/kWh from 2020 (Figure ES.2). Already today, and increasingly in the future, many renewable power generation projects can undercut fossil fuel-fired electricity generation, without financial support. With the right regulatory and institutional frameworks in place, their competitiveness should only further improve.

    Decreasing electricity costs from renewables as a whole, and the low costs from the best solar PV and onshore wind projects, represent a real paradigm shift in the competitiveness of different power generation options. Solar and wind power will provide very affordable electricity, with all the associated economic benefits. Furthermore, their low costs mean that previously uneconomic strategies in the power sector can become profitable. Curtailment – previously an unthinkable economic burden for renewables – could become a rational economic decision, maximising variable renewable penetration and minimising overall system costs.

    Similarly, very low prices in areas with excellent solar and wind resources could open-up the economic potential of “power-to-X” technologies (e.g., power to hydrogen or ammonia, or other energy dense, storable mediums). At the same time, low prices make the economics of electricity storage more favourable. This could turn a potential drawback of electric vehicles (EVs) – their potentially high instantaneous power demand for recharging – into an asset. In effect, EVs can take advantage of cheap renewable power when it is available, while potentially feeding electricity back into the grid when needed.

    This, however, needs to be balanced against the increased costs of integrating variable renewables and the increased flexibility required to manage systems with very high levels of variable renewable energy (VRE). To date, these integration costs have remained modest, but they could rise as very high VRE shares are reached (see IRENA, 2017, IRENA Cost and Competitiveness Indicators: Rooftop Solar PV), especially without complementary policies across the power sector. For instance, if transmission expansions fail to keep pace with deployment, renewable power sources could face curtailment.

    The sharp cost reductions for CSP, solar PV, onshore and offshore wind – both recent and anticipated – represent remarkable deflation rates.

    Conventional wisdom has been a poor guide in estimating the rate of cost reductions from solar and wind power technologies. It has underestimated the capacity of technology improvements, the industrialisation of manufacturing, economies of scale, manufacturing efficiencies, process innovations by developers and, competition in supply chains to all continuously drive down costs faster than expected in the right regulatory and policy setting.

    The decline in the cost of electricity experienced from 2010 to 2017, and signalled for 2020 from auction data, is plotted against cumulative installed capacity in Figure ES.3 for the four main solar and wind technologies. A log-log scale is used to allow easy interpretation as learning curves. The learning rate for offshore wind (i.e. the LCOE reduction for every doubling in global cumulative installed capacity) could reach 14% over the period 2010- 2020, with new capacity additions over this period estimated to be around 90% of the cumulative installed offshore wind capacity that would be deployed by the end of 2020.5

    For onshore wind, the learning rate for 2010 to 2020 may reach 21%, with new capacity added over this period covering an estimated 75% of cumulative installed capacity at the end of 2020. CSP has a higher estimated learning rate of 30%, with deployment between 2010 and 2020 representing an estimated 89% of cumulative installed capacity by the end of that period.6 Solar PV has the highest estimated learning rate – 35% between 2010 and 2020 – with new capacity additions over this timescale that are estimated to be 94% of cumulative capacity by its conclusion.

    Onshore wind is one of the technologies with the longest histories of available cost data. Data in the IRENA Renewable Cost Database shows that the learning rate for the cost of electricity from this source is higher for the period 2010-2020 than the learning rate estimated for the period 1983-2016. This will, in all probability, be in part due to a lower WACC from the auction results than is used in the LCOE calculations. This is unlikely to explain all of the difference, however. The data therefore tends to suggest that the learning rate for onshore wind, at least, is currently higher than the long-term average.

    The modular, scalable nature solar and wind power generation technologies, and the replicability of their project development process, rewards stable support policies with continuous cost reductions. This has already made onshore wind and solar PV highly competitive options for new generation capacity. Auction results suggest that CSP and offshore wind should follow a similar path. A comparable process is playing out for electricity storage. Wherever renewable power technologies can be modular, scalable and replicable, decision makers can be confident that industrialisation and the opening of new markets will yield steady cost reductions in the right regulatory and policy environment.

    Reductions in total installed costs are driving the fall in the LCOE for solar and wind power technologies, but to varying extents. They have been most important for solar PV, CSP and onshore wind.

    On the back of price declines for solar PV modules, the installed costs of utility-scale solar PV projects fell by 68% between 2010 and 2017, with the LCOE for the technology falling 73% over that period. The total installed costs of newly commissioned CSP projects fell by 27% in 2010-2017, with a 33% LCOE reduction overall. Installed costs for newly commissioned onshore wind projects fell by 20%, with a 22% reduction in LCOE. For offshore wind, the total installed costs fell by 2%, with a 13% reduction in LCOE over the same period…

    IFTTT Recipe: Share new blog posts to Facebook connects blogger to facebook

    0 Comments:

    Post a Comment

    << Home