NewEnergyNews: Monday Study: All About Tranportation Electrification/

NewEnergyNews

Gleanings from the web and the world, condensed for convenience, illustrated for enlightenment, arranged for impact...

The challenge now: To make every day Earth Day.

YESTERDAY

THINGS-TO-THINK-ABOUT WEDNESDAY, August 23:

  • TTTA Wednesday-ORIGINAL REPORTING: The IRA And The New Energy Boom
  • TTTA Wednesday-ORIGINAL REPORTING: The IRA And the EV Revolution
  • THE DAY BEFORE

  • Weekend Video: Coming Ocean Current Collapse Could Up Climate Crisis
  • Weekend Video: Impacts Of The Atlantic Meridional Overturning Current Collapse
  • Weekend Video: More Facts On The AMOC
  • THE DAY BEFORE THE DAY BEFORE

    WEEKEND VIDEOS, July 15-16:

  • Weekend Video: The Truth About China And The Climate Crisis
  • Weekend Video: Florida Insurance At The Climate Crisis Storm’s Eye
  • Weekend Video: The 9-1-1 On Rooftop Solar
  • THE DAY BEFORE THAT

    WEEKEND VIDEOS, July 8-9:

  • Weekend Video: Bill Nye Science Guy On The Climate Crisis
  • Weekend Video: The Changes Causing The Crisis
  • Weekend Video: A “Massive Global Solar Boom” Now
  • THE LAST DAY UP HERE

    WEEKEND VIDEOS, July 1-2:

  • The Global New Energy Boom Accelerates
  • Ukraine Faces The Climate Crisis While Fighting To Survive
  • Texas Heat And Politics Of Denial
  • --------------------------

    --------------------------

    Founding Editor Herman K. Trabish

    --------------------------

    --------------------------

    WEEKEND VIDEOS, June 17-18

  • Fixing The Power System
  • The Energy Storage Solution
  • New Energy Equity With Community Solar
  • Weekend Video: The Way Wind Can Help Win Wars
  • Weekend Video: New Support For Hydropower
  • Some details about NewEnergyNews and the man behind the curtain: Herman K. Trabish, Agua Dulce, CA., Doctor with my hands, Writer with my head, Student of New Energy and Human Experience with my heart

    email: herman@NewEnergyNews.net

    -------------------

    -------------------

      A tip of the NewEnergyNews cap to Phillip Garcia for crucial assistance in the design implementation of this site. Thanks, Phillip.

    -------------------

    Pay a visit to the HARRY BOYKOFF page at Basketball Reference, sponsored by NewEnergyNews and Oil In Their Blood.

  • ---------------
  • WEEKEND VIDEOS, August 24-26:
  • Happy One-Year Birthday, Inflation Reduction Act
  • The Virtual Power Plant Boom, Part 1
  • The Virtual Power Plant Boom, Part 2

    Monday, February 08, 2021

    Monday Study: All About Tranportation Electrification

    The shape of electrified transportation

    Matteo Muratori and Trieu Mai, 21 December 2020 (Environmental Letters)

    Transportation is currently the least-diversified energy demand sector, with over 90% of global transportation energy use coming from petroleum products [1]. For more than a century, petroleum fuels have been relied upon to move people and goods within and between towns and cities, and on roads, railways, farms, waterways, and in the air. These energy-dense fuels have unquestionably provided reliable and convenient mobility options to power the modern global economy. However, these benefits have also created challenges associated with geopolitics, energy security, price volatility, and environmental impacts.

    Various attempts have been made to diversify the transportation energy mix, but global dependence on petroleum for transport remains [2–7]. For example, since the 1970s, various programs in several countries have been implemented to promote the adoption of compressed natural gas [8], ethanol [9, 10], hydrogen [11, 12], and other alternative fuels, with successes limited to niche applications. After more than a century of petroleum dominance, however, many leading experts anticipate that electric vehicles (EVs, here including battery and plugin hybrid electric vehicles) could dramatically disrupt the transportation energy demand landscape [13– 20]. Light-duty passenger EV cumulative sales passed the 7 million mark in 2019 [19], and annual sales rates are accelerating rapidly in many countries—over 2 million EVs were sold globally in 2019 alone. These trends are mainly driven by recent advances in battery technology and environmental policies [21–23] as well as expanded charging infrastructure and consumer preference for EVs (e.g. greater acceleration and low noise). If these trends continue, electricity— which currently provides a very small share of transportation final energy—could provide an important source of energy for on-road mobility. Such a change could require massive investments in infrastructure and technology (e.g. charging networks [24–27], electric system upgrades [28–30], and vehicle replacement). At the same time, transportation electrification could: remove tailpipe emissions responsible for poor air quality and related health issues, especially in large cities; enable decarbonization of the transportation sector, provided the electricity supply also decarbonizes; reduce energy use by exploiting the efficiency of electric powertrains; diversify the energy mix and reduce dependence on petroleum; and provide more affordable and less cost-volatile transportation solutions.

    Extensive electrification of the economy— and particularly of the transportation sector— has become increasingly common in recent energy transformation scenarios, including those designed to achieve climate-change mitigation goals [17, 18, 31, 32]. Previous energy transformation studies (e.g. [33]) relied on greater changes in the energy supply to reduce transportation emissions and petroleum dependency and identified the transportation sector as one of the biggest hurdles to emissions reductions [34–37]. While barriers still exist for widespread EV adoption, more recent studies have highlighted great opportunity to electrify the demand side of several end-use sectors over the next few decades, including prospects for EVs to displace conventional vehicles powered by liquid petroleum fuels [17, 18]. A revealing example of the transportationelectrification nexus is shown in figure 1, which summarizes results from 159 scenarios projected by several models underpinning the Special Report on Global Warming of 1.5 ◦C (SR1.5) by the Intergovernmental Panel on Climate Change (IPCC); here we only consider scenarios achieving 1.5 ◦C or 2 ◦C warming compared to pre-industrial levels. While transportation currently represents only ∼2% of global electricity demand (with rail responsible for over two-thirds of this total), the role—and impact— of transportation in the power sector may grow significantly in the future. For the median IPCC scenario, electricity provides 18% of all transportation energy needs by 2050, while transportation makes up nearly 10% of annual global electricity consumption. In the more extreme scenarios, these percentages can exceed 40% and 20%, respectively. Qualitatively, these results show that recent models and scenarios consistently project: (a) growing use of electricity in the transportation sector, especially for on-road vehicle electrification; and (b) that the transportation sector will play a much more significant role in future electricity systems.

    The potential substantial growth in annual electricity consumption driven by transportation electrification could significantly affect power system planning, operation, and infrastructure investments. However, just as important as the expected load growth (in terms of total megawatt-hours [MWh] consumed) is the shape of this new source of power demand. In fact, electricity is an instantaneous commodity that is still expensive to store [38]: electricity supply (generation + storage discharge) must match the demand (including demand response) at each instant. Therefore, understanding the shape of electricity loads is critical for the design, planning, and operation of electricity systems, including projected capacity expansion needed to satisfy demand, sub-hourly dispatch of different production units, and sizing of the transmission and distribution infrastructure.

    Still, the shape of EV charging is highly uncertain, dynamically dependent on supply (i.e. due to the intrinsic flexibility in vehicle charging over time and locations and the high potential to engage in demand response), and generally poorly understood—and thus often not well represented in models…

    …Futures with major EV and renewable penetrations—which are growing increasingly common in energy-transition scenarios, as well as those designed to meet certain policy objectives—can amplify the interactions between EV charging and power system planning, as well as heighten the enabling role of flexibility in this transition. For example:

    • EV charging during the day (i.e. workplace charging) could reduce solar curtailment during the belly of the ‘duck curve’ [68], and overnight (i.e. home) charging could help reduce wind curtailment. However, charging after the evening commute could further stress ramping needs for systems that already need to manage solar production that rises and sets with the sun.

    • EV charging—spread across millions of vehicles— also introduces additional uncertainty for power system operations, including distribution system considerations. This uncertainty, especially coupled with the variability of wind and solar generation and other distributed energy resources, could raise the need for more expensive operating reserves and, possibly, investments in additional generation or storage to meet new or heightened grid requirements.

    • At the same time, flexible or ‘smart’ vehicle charging and vehicle-to-grid (V2G) applications could mitigate these issues and support the grid in several ways. More research is needed to understand the related technical implications (e.g. communication and control systems, impact on battery wearand-tear and aging), required business models (e.g. retail electricity rates and demand response programs), needed charging infrastructure, the tradeoffs across different value streams that EV could provide, and EV users’ willingness to engage in these different charging paradigms.

    Figure 2 provides an illustration of possible impacts of EV charging on total electricity load shapes under different paradigms; illustrative non-EV ‘Load’ is taken from [69] for the peak summer day in the California Independent System Operator (CAISO) system…

    …The effects of EV charging occur over several timescales—from multi-year or annual energy use and peak load (e.g. generation capacity requirements, response to extreme events, transmission and distribution system planning), seasonal and monthly scheduling (e.g. hydroelectric power dispatch, maintenance cycles), daily and hourly operations (i.e. commitment and dispatch decisions), and sub-hourly fluctuations (i.e. dispatch, operating reserves, contingency events, power quality). Considerations for integrating flexible loads like EVs over different timescales have some similarities to those for energy storage technologies, which have been deployed at significant scale for applications ranging from fractions of a second to many hours and have been shown to be dependent on the specific structure of the power system (e.g. generation mix) [70, 71]. The effects of EV charging can also differ across regions depending on the local generation mix and details of the transmission and distribution systems—which may impose even more constraints to or, alternatively, offer more benefits associated with flexible vehicle charging.

    The potential for EV charging flexibility to provide system benefits has been shown for a variety of power systems applications and timescales, including planning and operations, bulk and distribution systems, and wholesale or retail markets. However, existing studies provide a piecemeal assessment focusing on specific aspects and/or applications rather than a comprehensive analysis of the value of EV charging flexibility across multiple dimensions and timescales. A more nuanced understanding of the impact of EV charging on power systems and of the value of flexible charging or V2G is needed across multiple dimensions and timescales to fill several research gaps.

    First, EV charging offers a new source of demandside flexibility that can respond in real time to system needs (e.g. drops in wind production, one- or bi-directional frequency regulation). But this flexibility is constrained by multiple complex and interacting factors, including mobility needs across multiple transportation segments and applications, vehicle characteristics, charging infrastructure availability, consumer perception and behavior, and markets and policies. Understanding the constraints to and potential for flexibility remains a key research need. V2G, that is, bi-directional power flow, also improves the ability of EVs to provide grid support—but it comes at the expense of potentially degrading vehicle batteries and possibly inconveniencing EV owners, so it requires a careful assessment of these tradeoffs. Second, business models and programs have not been established to engage and compensate EV users for providing charging flexibility and proper pricing of different value streams provided by flexible EV charging and V2G, especially for distribution-level aspects that are typically not explicitly reflected in today’s electricity pricing. Third, EV charging flexibility could span multiple days, providing the ability to curtail demand in response to critical events (e.g. heat waves) and improve system resilience, but multiday flexibility has not been considered in most studies. Finally, the trade-offs and interactions among different value streams (e.g. reshaping EV charging to minimize overall system peak or support local distribution systems) have not been fully explored—and competing objectives might lead to different ‘optimal’ charging solutions.

    To conclude, it is clear that vehicle electrification will increase electricity demand, but the shape of transportation electricity consumption will be just as influential to the future global energy system as the quantity. Appropriate understanding of electricity demand is essential to inform the optimal design and operation of future electric power systems, including capacity expansion requirements, value of transmission, operation and cost of producing electricity, and design of distribution systems. The ability to accurately model future electrification scenarios across different transportation segments (e.g. personal lightduty vehicles, taxis, vocational commercial vehicles), properly represent vehicle use and charging behavior, and characterize the flexibility of charging scheduling, including its ability to provide grid services, is fundamental to better inform energy system transformation pathways over the 21st century. In particular, a proper assessment of how flexible EV charging can support and optimize electric power system design and operation could support the design and development of future power systems that include appropriate business models and long-term implementation strategies designed to consider mobility and power systems needs simultaneously. More nuanced modeling of the electricity demand from EVs—and of their impact on electricity load shapes and duration curves—has become critical to properly assess energy system transformation pathways, evaluate the potential impacts of different policies, and guide future investments, including informing the energy transition and infrastructure development decisions in a post-COVID-19 world.

    0 Comments:

    Post a Comment

    << Home